EMG sinyallerinin sınıflandırılması
Yükleniyor...
Dosyalar
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
İnönü Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
EMG sinyali kasların kasılmasın sonucunda oluşan elektriksel aktivasyonun ölçülmesi işlemidir. Bu nedenle kaslardan alınan EMG sinyalleri kaslar hakkında bilgi sağlamaktadır. Bu bilgiler günümüzde kas hastalıkları teşhisinde, protez kol ve, hareket tespiti çalışmalarında kullanılmaktadır. Bu tezde EMG sinyallerinden Yapay Sinir Ağları kullanılarak hareket tespiti amaçlanmıştır. Öncelikle alınan EMG sinyallerine Kısa Zamanlı Fourier Dönüşümü (KZFD) uygulanarak sinyallere ait zaman-frekans gösterimleri elde edilmiştir. Elde edilen zaman-frekans temsilinden İstatiksel metotlar, Gri Seviye Eş-Oluşum Matrisi (GSEM) ve Yerel İkili Örüntüler (YİÖ) metotları ile EMG sinyaline ait öznitelikler çıkarılmıştır. Çıkarılan bu öznitelikler Yapay Sinir Ağlarına (YSA) giriş verisi olarak verilerek EMG sinyalleri sınıflandırılmıştır. Deneysel sonuçlar incelendiği zaman tasarlanan sistemin kullanılan EMG verisi üzerinde başarılı sonuç aldığı gözlemlenmiştir. ANAHTAR KELİMELER: EMG Sinyal İşleme, Kısa Zamanlı Fourier Dönüşümü, Gri Seviye Eş-Oluşum Matrisi, Yerel İkili Örüntüler, Yapay Sinir Ağları
The EMG signal is the process of measuring the electrical activation that occurs as a result of muscular contraction. For this reason, EMG signals from the muscles provide information about the muscles. This information is currently used in the diagnosis of muscular diseases, prosthetic arm and motion detection studies. In this thesis, motion detection is aimed by EMG signals using Artificial Neural Networks. Primarily, time-frequency representations of signals are obtained by applying Short Time Fourier Transform (STFT) to the received EMG signals. From the obtained time-frequency properties, the attributes of the EMG signal were extracted with the statistical methods, Gray-Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP) methods. These extracted attributes are given as input data to Artificial Neural Network (ANN) and the system performance is calculated. When the experimental results were examined, it was observed that the designed systsem had a successful result on the used EMG data. KEYWORDS: EMG Signal Processing, Short Time Fourier Transform, Gray Level Co-Occurrence Matrix, Local Binary Patterns, Artificial Neural Networks
The EMG signal is the process of measuring the electrical activation that occurs as a result of muscular contraction. For this reason, EMG signals from the muscles provide information about the muscles. This information is currently used in the diagnosis of muscular diseases, prosthetic arm and motion detection studies. In this thesis, motion detection is aimed by EMG signals using Artificial Neural Networks. Primarily, time-frequency representations of signals are obtained by applying Short Time Fourier Transform (STFT) to the received EMG signals. From the obtained time-frequency properties, the attributes of the EMG signal were extracted with the statistical methods, Gray-Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP) methods. These extracted attributes are given as input data to Artificial Neural Network (ANN) and the system performance is calculated. When the experimental results were examined, it was observed that the designed systsem had a successful result on the used EMG data. KEYWORDS: EMG Signal Processing, Short Time Fourier Transform, Gray Level Co-Occurrence Matrix, Local Binary Patterns, Artificial Neural Networks
Açıklama
Anahtar Kelimeler
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Ayaz, Furkan (2018). EMG sinyallerinin sınıflandırılması. Yayımlanmış Yüksek lisans tezi, İnönü Üniversitesi, Malatya.1-67 ss.