Mısır Tohumu Embriyolarının Bölütlenmesinde Tam Evrişimsel Ağ Tabanlı Mimarilerin Tam Bağlı Şartlı Rastgele Alanlar ile Entegrasyonu
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Haploid ve diploid mısır tohumlarının sınıflandırılması mısır ıslahında önemli bir konudur. R1-nj renk markörü sayesinde haploid ve diploid mısır tohumları embriyolarındaki renklenme farklılıkları dikkate alınarak görsel olarak ayırt edilebilmektedir. Bu nedenle, mısır tohumu embriyolarının bölütlenmesi haploid ve diploid mısır tohumlarının sınıflandırılması için önemli bir ön-işlemdir. Bu çalışmada, mısır tohumu görüntülerinin otomatik embriyo bölütlemesinde tam evrişim ağ tabanlı derin öğrenme mimarilerinin (FCN8s, SegNet ve U-Net) bölütleme performansları değerlendirilmektedir ve bölütleme çıktılarının tam bağlı Şartlı Rastgele Alanlar yöntemiyle düzgünleştirilmesi incelenmektedir. Böylece tam bağlı Şartlı Rastgele Alanların bölütleme sonucuna etkisi araştırılmıştır Ayrıca bu çalışma için mısır tohumu görüntüleri piksel seviyesinde etiketlenerek referans görüntüler elde edilmiş ve haploid ve diploid mısır tohumu görüntüleri için yeni bir semantik görüntü bölütleme veri seti oluşturulmuştur. Çalışma sonuçları göstermiştir ki, tam evrişim ağ tabanlı derin öğrenme mimarileri ile tam bağlı Şartlı Rastgele Alanlar’ın birlikte kullanımı, görüntü bölütleme sonucunu ortalama IoU performans değerlendirme metriğinde FCN8s, SegNet ve U-Net derin öğrenme mimarileri için sırasıyla 0.0139, 0.0076, 0.0024 iyileştirdiği görülmüştür.
Açıklama
Anahtar Kelimeler
Kaynak
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
22
Sayı
1