Operator time-splitting techniques combined with quintic B-spline collocation method for the generalized Rosenau-KdV equation

dc.authoridKutluay, Selçuk/0000-0001-9610-504X
dc.authoridYAĞMURLU, Nuri Murat/0000-0003-1593-0254
dc.authorwosidKutluay, Selçuk/AAA-3586-2021
dc.authorwosidYAĞMURLU, Nuri Murat/AAB-8514-2020
dc.contributor.authorKutluay, Selcuk
dc.contributor.authorKarta, Melike
dc.contributor.authorYagmurlu, Nuri M.
dc.date.accessioned2024-08-04T20:46:02Z
dc.date.available2024-08-04T20:46:02Z
dc.date.issued2019
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn this article, the generalized Rosenau-KdV equation is split into two subequations such that one is linear and the other is nonlinear. The resulting subequations with the prescribed initial and boundary conditions are numerically solved by the first order Lie-Trotter and the second-order Strang time-splitting techniques combined with the quintic B-spline collocation by the help of the fourth order Runge-Kutta (RK-4) method. To show the accuracy and reliability of the proposed techniques, two test problems having exact solutions are considered. The computed error norms L-2 and L-infinity with the conservative properties of the discrete mass Q(t) and energy E(t) are compared with those available in the literature. The convergence orders of both techniques have also been calculated. Moreover, the stability analyses of the numerical schemes are investigated.en_US
dc.identifier.doi10.1002/num.22409
dc.identifier.endpage2235en_US
dc.identifier.issn0749-159X
dc.identifier.issn1098-2426
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85068233084en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage2221en_US
dc.identifier.urihttps://doi.org/10.1002/num.22409
dc.identifier.urihttps://hdl.handle.net/11616/98852
dc.identifier.volume35en_US
dc.identifier.wosWOS:000473902600001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofNumerical Methods For Partial Differential Equationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectquintic B-spline collocation methoden_US
dc.subjectRosenau-KdV equationen_US
dc.subjectRunge-Kutta methoden_US
dc.subjectsplitting techniquesen_US
dc.subjectstability analysisen_US
dc.titleOperator time-splitting techniques combined with quintic B-spline collocation method for the generalized Rosenau-KdV equationen_US
dc.typeArticleen_US

Dosyalar