Radial basis function neural network and logistic regression analysis for prognostic classification of coronary artery disease
Küçük Resim Yok
Tarih
2007
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Amaç: Önceki çalışmalarda geriye yayılım algoritması ile eğitilen yapay sinir ağları yaygın olarak incelenmiştir. Bu çalışmada, koroner arter hastalığının (KAH) sınıflanmasında radial basis fonksiyonu sinir ağı ve lojistik regresyon analizi tanıtılmaktadır. Yöntem: Kardiyoloji bölümüne müracaat eden ardışık 237 bireyin kayıtları analizde kullanılmıştır. Koroner arter hastalığının sınıflanmasında radial basis fonksiyonu sinir ağı ve lojistik regresyon analizi kullanılmıştır. Bulgular: Çalışmanın bulguları, radial basis fonksiyonu sinir ağı ve lojistik regresyon analizinin sınıflamada oldukça başarılı olduğunu ve incelenen klinik değişkenlere dayalı olarak koroner arter gibi hastalıkların sınıflanmasında invaziv olmayan bir biçimde kullanılabileceğini göstermiştir. Sonuç: İncelenen KAH'a ait verilerde, lojistik regresyon analizi, radial basis fonksiyonu sinir ağından daha iyi sonuçlar vermiştir. Ancak, daha büyük örnek çapları söz konusu olduğunda radial basis fonksiyonu sinir ağı daha iyi sınıflama sonuçları verebilir. Daha kesin karşılaştırma sonuçları elde edebilmek için, simülasyon çalışmaları değişik yöntemler kullanılarak yapılmalıdır.
Açıklama
Anahtar Kelimeler
Kaynak
Ankara Üniversitesi Tıp Fakültesi Mecmuası
WoS Q Değeri
Scopus Q Değeri
Cilt
60
Sayı
3