On Jacobi's theorems

dc.contributor.authorKaradağ, H. Bayram
dc.contributor.authorKeleş, Sadık
dc.date.accessioned2020-07-09T12:32:46Z
dc.date.available2020-07-09T12:32:46Z
dc.date.issued1998
dc.departmentİnönü Üniversitesien_US
dc.description.abstractÖz (İngilizce): In this paper, J. Jacobi's Theorems [9] have been considered for the spherical curves drawn on the unit dual sphere during the closed space motions. The integral invariants of the ruled surface corresponding, in the line space, to the spherical curve drawn by a fixed point on the moving unit dual sphere during the one-parameter closed motion were calculated with a different approach from the area vector used by H. R. Müller [11]. In addition, the ruled surfaces corresponding to the curves drawn by the unit tangent vector, principal normal vector or a unit vector on the osculating plane of the mentioned curve, were seen to be cones with this approach.en_US
dc.identifier.citationH. Bayram K., Sadık K. (1998). On Jacobi's theorems,Communications Series A1: Mathematics and Statisticsen_US
dc.identifier.endpage61en_US
dc.identifier.issn1303-5991
dc.identifier.issn2618-6470
dc.identifier.issue1-2en_US
dc.identifier.startpage51en_US
dc.identifier.trdizinid57270en_US
dc.identifier.urihttps://hdl.handle.net/11616/16691
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/57270
dc.identifier.volume47en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isotren_US
dc.publisherCommunications Series A1: Mathematics and Statisticsen_US
dc.relation.ispartofCommunications Faculty of Sciences University of Ankara Series A1: Mathematics and Statisticsen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectİstatistik ve Olasılıken_US
dc.subjectMatematiken_US
dc.titleOn Jacobi's theoremsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale Dosyası.pdf
Boyut:
307.72 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: