Revisiting four approximation methods for fractional order transfer function implementations: Stability preservation, time and frequency response matching analyses

dc.authoridTan, Nusret/0000-0002-1285-1991
dc.authoridAlagoz, Baris Baykant/0000-0001-5238-6433
dc.authoridDeniz, Furkan Nur/0000-0002-2524-7152
dc.authoridKoseoglu, Murat/0000-0003-3774-1083
dc.authorwosidTan, Nusret/ABG-8122-2020
dc.authorwosidAlagoz, Baris Baykant/ABG-8526-2020
dc.authorwosidDeniz, Furkan Nur/ABB-9604-2020
dc.authorwosidKoseoglu, Murat/ABG-8975-2020
dc.contributor.authorDeniz, Furkan Nur
dc.contributor.authorAlagoz, Baris Baykant
dc.contributor.authorTan, Nusret
dc.contributor.authorKoseoglu, Murat
dc.date.accessioned2024-08-04T20:47:22Z
dc.date.available2024-08-04T20:47:22Z
dc.date.issued2020
dc.departmentİnönü Üniversitesien_US
dc.description.abstractDue to high computational load of ideal realization of fractional order elements, fractional order transfer functions are commonly implemented via integer-order, limited-band approximate models. An important side effect of such a non-ideal fractional order controller function realization for control applications is that the approximate fractional order models may deteriorate practical performance of optimal control tuning methods. Two major concerns come out for approximate realization in fractional-order control. These are stability preservation and model response matching properties. This study revisits four fundamental fractional order approximation methods, which are Oustaloup's method, CFE method, Matsuda's method and SBL fitting method, and considers stability preservation, time and frequency response matching performances. The study firstly presents a detailed review of Oustaloup's method, CFE method, Matsuda's method. Then, a modified version of SBL fitting method is presented. The stability preservation properties of approximation methods are investigated according to critical root placements of corresponding approximation method. Stability issue is highly significant for control applications. For this reason, a detailed analysis and comparision of stability preservation properties of these four approximation methods are investigated. Moreover, approximate implementations of an optimally tuned FOPID controller function are performed according to these four methods and compared for closed loop control of a large time delay system. Findings of this study indicate a fact that approximate models can considerably influence practical performance of optimally tuned FOPID control systems and ignorance of limitations of approximation methods in optimal tuning solutions can significantly affect real world performances. (C) 2020 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.arcontrol.2020.03.003
dc.identifier.endpage257en_US
dc.identifier.issn1367-5788
dc.identifier.issn1872-9088
dc.identifier.scopus2-s2.0-85085055511en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage239en_US
dc.identifier.urihttps://doi.org/10.1016/j.arcontrol.2020.03.003
dc.identifier.urihttps://hdl.handle.net/11616/99298
dc.identifier.volume49en_US
dc.identifier.wosWOS:000572160600001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofAnnual Reviews in Controlen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional order approximation methodsen_US
dc.subjectFOPID controlleren_US
dc.subjectstability preservationen_US
dc.subjectfractional order transfer function modelingen_US
dc.subjectapproximate implementationen_US
dc.titleRevisiting four approximation methods for fractional order transfer function implementations: Stability preservation, time and frequency response matching analysesen_US
dc.typeArticleen_US

Dosyalar