Validating superior electrochemical properties of Ti3C2 MXene for supercapacitor applications through first-principles calculations

dc.authoridSaleem, Muhammad Farooq/0000-0001-6133-0810
dc.authoridALTIN, Serdar/0000-0002-4590-907X
dc.authorwosidUsman, Muhammad/KIG-9930-2024
dc.authorwosidKhan, Rashid/AGU-9094-2022
dc.authorwosidSaleem, Muhammad Farooq/GQH-5037-2022
dc.authorwosidALTIN, Serdar/H-4880-2014
dc.contributor.authorIrfan, Sheheera
dc.contributor.authorHaleem, Yasir A.
dc.contributor.authorUsman, Muhammad
dc.contributor.authorAhmad, Naseeb
dc.contributor.authorArshad, Muhammad
dc.contributor.authorIrshad, Muhammad Imran
dc.contributor.authorSaleem, Muhammad Farooq
dc.date.accessioned2024-08-04T20:55:09Z
dc.date.available2024-08-04T20:55:09Z
dc.date.issued2024
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThis work explores the characteristics of two-dimensional (2D) titanium carbide (Ti3C2 MXene) and utilizes first-principles study to weigh its potential for supercapacitor applications. Scanning electron microscopy images confirm the layered morphology of the MXene, and energy-dispersive X-ray spectroscopy (EDX) analysis supports the extraction of aluminum from the MAX phase. Fourier-transform infrared (FTIR) spectroscopy confirms the presence of oxygen-based functional groups on the surface of the MXene and X-ray diffraction (XRD) patterns validate its hexagonal crystalline structure. Cyclic voltammetry (CV) analysis reveals the presence of redox peaks, indicating the pseudocapacitive behaviour of the fabricated electrode. Additionally, galvanostatic charge-discharge (GCD) measurements yield a calculated specific capacitance of 370 F g(-1). Electrochemical impedance spectroscopy (EIS) substantiates the low impedance resulting from the layered structure via the adequate adsorption/desorption of cations. The utilization of first-principles density functional theory (DFT) calculations reveals the merging of conduction and valence bands, signifying effective conductivity. Both the total and partial density of states cross the Fermi level, indicating a highly efficient charge mobility process. The combination of prominent surface redox reactions and excellent conductivity contributes to the superior specific capacitance of the fabricated electrode. Overall, these results highlight the excellent electrochemical properties of the Ti3C2 MXene electrode, declaring it as a promising candidate for supercapacitor applications.en_US
dc.description.sponsorshipNational Research Program for Universities (NRPU) of the Higher Education Commission (HEC) of Pakistan [20-12058]en_US
dc.description.sponsorshipThis work was supported by Project No. 20-12058 of the National Research Program for Universities (NRPU) of the Higher Education Commission (HEC) of Pakistan.en_US
dc.identifier.doi10.1039/d3nj05075k
dc.identifier.endpage4994en_US
dc.identifier.issn1144-0546
dc.identifier.issn1369-9261
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85187500169en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage4982en_US
dc.identifier.urihttps://doi.org/10.1039/d3nj05075k
dc.identifier.urihttps://hdl.handle.net/11616/101872
dc.identifier.volume48en_US
dc.identifier.wosWOS:001177288500001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherRoyal Soc Chemistryen_US
dc.relation.ispartofNew Journal of Chemistryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTransition-Metal Carbidesen_US
dc.subjectGrapheneen_US
dc.subjectPerformanceen_US
dc.subjectExfoliationen_US
dc.subjectElectrodesen_US
dc.subjectHydrogenen_US
dc.subjectDevicesen_US
dc.titleValidating superior electrochemical properties of Ti3C2 MXene for supercapacitor applications through first-principles calculationsen_US
dc.typeArticleen_US

Dosyalar