Assessment of phytotoxic and genotoxic effects of anatase TiO2 nanoparticles on maize cultivar by using RAPD analysis

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Parlar Scientific Publications

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, early phytotoxic and genotoxic effects of chemically synthesized nano-TiO2 (anatase) were investigated in seedlings of maize (Zea mays cv. Hido). Control (Hoagland) and NaCl (300 mM) groups were administered with nano-TiO2 (0.1%, 0.2% and 0.3%). Seed germination and seedling growth parameters of maize cultivar were markedly inhibited by salt stress. Nano-TiO2, without depending on concentration, was found to be ineffective on germination percentage in all administrations. On the contrary, nano-TiO2 caused significant increases in root-stem length and fresh-dry weights especially in NaCl+nano-TiO2 administrations. In salt administered samples, 0.3% nano-TiO2 increased root length 1.4 fold, stem length 4.8 fold, and fresh weight 1.2 fold. Genotoxic properties of nano-TiO2 in seedlings of maize were evaluated by using randomly amplified polymorphic DNA (RAPD-PCR). In RAPD analysis, 20 RAPD primers were found to produce unique polymorphic band profiles at different concentrations of nano-TiO2 maize seedlings. Genomic template stability (GTS), a qualitative measurement of changes in RAPD patterns of genomic DNA, decreased depending on increasing nano-TiO2, NaCl, and NaCl+nano-TiO2 concentrations. Therefore, it could be concluded that nano-TiO2 of appropriate dose can be used to ameliorate negative effects of salt stress by increasing growth potential of maize. © by PSP.

Açıklama

Anahtar Kelimeler

Genomic template stability, Genotoxic effects, Germination seedling, Growth parameters, Nano-TiO2, RAPD, Zea mays

Kaynak

Fresenius Environmental Bulletin

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

27

Sayı

1

Künye