Complexity and irregularity analysis of the output data of a cortical network

Küçük Resim Yok

Tarih

2013

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Depending on the complex interconnection of billions of neurons forming cortical network excitation times and the emergence of action potentials or spike trains becomes complex and irregular. The effect of various parameters such as synaptic connections, conductivity and voltage dependent channels on the output of the network has become of research issues. In this study, based on Hodgkin-Huxley neuron model an artificial cortical network that simulates a local region of cortex was designed and the effect of probabilistic values of network parameters used in this model on irregularity and complexity of the spike trains at the neurons' output were investigated. Approximation Entropy, Spectral Entropy and Magnitude Squared Coherence methods were used for irregularity analysis. © 2013 IEEE.

Açıklama

2013 21st Signal Processing and Communications Applications Conference, SIU 2013 -- 24 April 2013 through 26 April 2013 -- Haspolat -- 98109

Anahtar Kelimeler

Coherence, Cortical network, Entropy

Kaynak

2013 21st Signal Processing and Communications Applications Conference, SIU 2013

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

Sayı

Künye