Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks
dc.authorid | Künkül, Asım/0000-0002-6080-2588 | |
dc.authorid | Yuceer, Mehmet/0000-0002-2648-3931 | |
dc.authorid | Boztepe, Cihangir/0000-0001-5019-2010 | |
dc.authorwosid | Boztepe, Cihangir/H-5877-2018 | |
dc.authorwosid | Künkül, Asım/ABG-8608-2020 | |
dc.authorwosid | Yuceer, Mehmet/E-5110-2012 | |
dc.contributor.author | Brahima, Sanogo | |
dc.contributor.author | Boztepe, Cihangir | |
dc.contributor.author | Kunkul, Asim | |
dc.contributor.author | Yuceer, Mehmet | |
dc.date.accessioned | 2024-08-04T20:43:00Z | |
dc.date.available | 2024-08-04T20:43:00Z | |
dc.date.issued | 2017 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | An interpenetrated polymer network (IPN) poly(NIPAAm-co-AAc) hydrogel was synthesized by two polymerization method: emulsion and solution polymerization. The pH- and temperature-sensitive hydrogel was loaded by swelling with riboflavin drug, a B2 vitamin.The release of riboflavin as a function of time has been achieved under different pH and temperature environments. The determination of experimental conditions and the analysis of drug delivery results were achieved using response surface methodology (RSM). In this work, artificial neural networks (ANNs) in MATLAB were also used to model the release data. The predictions from the ANN model, which associated input variables, produced results showing good agreement with experimental data compared to the RSM results. (C) 2017 Elsevier B.V. All rights reserved. | en_US |
dc.description.sponsorship | Inonu University Research Fund [I.U.B.A.P. 2015-22] | en_US |
dc.description.sponsorship | This work was supported by the Inonu University Research Fund [project number: I.U.B.A.P. 2015-22]. | en_US |
dc.identifier.doi | 10.1016/j.msec.2017.02.081 | |
dc.identifier.endpage | 432 | en_US |
dc.identifier.issn | 0928-4931 | |
dc.identifier.issn | 1873-0191 | |
dc.identifier.pmid | 28415481 | en_US |
dc.identifier.scopus | 2-s2.0-85013287708 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 425 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.msec.2017.02.081 | |
dc.identifier.uri | https://hdl.handle.net/11616/97697 | |
dc.identifier.volume | 75 | en_US |
dc.identifier.wos | WOS:000400720800048 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Materials Science and Engineering C-Materials For Biological Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Smart hydrogel | en_US |
dc.subject | IPN | en_US |
dc.subject | Drug release | en_US |
dc.subject | RSM | en_US |
dc.subject | ANN | en_US |
dc.title | Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks | en_US |
dc.type | Article | en_US |