Sharp bends of phononic crystal surface modes

dc.authoridCicek, Ahmet/0000-0002-7686-0045
dc.authoridulug, bulent/0000-0003-1744-6861
dc.authoridSalman Durmuslar, Aysevil/0000-0001-6998-5942
dc.authoridKAYA, Olgun Adem/0000-0002-8728-6341
dc.authorwosidCicek, Ahmet/D-5990-2012
dc.authorwosidulug, bulent/C-2988-2016
dc.authorwosidKAYA, Olgun Adem/ABH-6274-2020
dc.authorwosidKAYA, Olgun Adem/Q-1686-2015
dc.authorwosidSalman Durmuslar, Aysevil/HJO-8681-2023
dc.contributor.authorCicek, Ahmet
dc.contributor.authorSalman, Aysevil
dc.contributor.authorKaya, Olgun Adem
dc.contributor.authorUlug, Bulent
dc.date.accessioned2024-08-04T20:41:20Z
dc.date.available2024-08-04T20:41:20Z
dc.date.issued2015
dc.departmentİnönü Üniversitesien_US
dc.description.abstractSharp bending of surface waves at the interface of a two-dimensional phononic crystal (PnC) of steel cylinders in air and the method of using a diagonally offset cylindrical scatterer are numerically demonstrated by finite-element method simulations. The radii of the diagonally offset scatterer and the cylinder at the PnC corner, along with the distance between them, are treated as optimization parameters in the genetic algorithm optimization of sharp bends. Surface wave transmittance of at most 5% for the unmodified sharp bend is significantly enhanced to approximately 75% as a result of optimization. A series of transmittance peaks whose maxima increase exponentially, as their widths reduce, with increasing frequency is observed for the optimized sharp bend. The transmittance peaks appear at frequencies corresponding to integer plus half-beat periods, depending on the finite surface length. The optimal parameters are such that the cylinder radius at the PnC corner is not significantly modified, whereas a diagonally offset scatterer having a diameter of almost two periods and a shortest distance of about 0.7 periods between them is required for the strongest transmittance peak. Utilization of PnC surface sharp bends as acoustic ring resonators is demonstrated.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [113F015]; TUBITAK [1929B011200102]en_US
dc.description.sponsorshipThis work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant number 113F015. AS acknowledges support from TUBITAK under grant number 1929B011200102.en_US
dc.identifier.doi10.1088/0953-8984/27/47/475003
dc.identifier.issn0953-8984
dc.identifier.issn1361-648X
dc.identifier.issue47en_US
dc.identifier.pmid26490966en_US
dc.identifier.scopus2-s2.0-84947969573en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1088/0953-8984/27/47/475003
dc.identifier.urihttps://hdl.handle.net/11616/97064
dc.identifier.volume27en_US
dc.identifier.wosWOS:000365346800005en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherIop Publishing Ltden_US
dc.relation.ispartofJournal of Physics-Condensed Matteren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectphononic crystalen_US
dc.subjectsurface modeen_US
dc.subjectsharp benden_US
dc.subjectgenetic algorithmen_US
dc.subjectacoustic ring resonatoren_US
dc.subjectacoustic circulatoren_US
dc.titleSharp bends of phononic crystal surface modesen_US
dc.typeArticleen_US

Dosyalar