Towards a 2-dimensional notion of holonomy

dc.authorwosidicen, ilhan/AAA-7082-2021
dc.contributor.authorBrown, R
dc.contributor.authorIçen, I
dc.date.accessioned2024-08-04T20:13:24Z
dc.date.available2024-08-04T20:13:24Z
dc.date.issued2003
dc.departmentİnönü Üniversitesien_US
dc.description.abstractPrevious work (Pradines, C. R. Acad. Sci. Paris 263 (1966) 907; Aof and Brown, Topology Appl. 47 (1992) 97) has given a setting for a holonomy Lie groupoid of a locally Lie groupoid. Here we develop analogous 2-dimensional notions starting from a locally Lie crossed module of groupoids. This involves replacing the Ehresmann notion of a local smooth coadmissible section of a groupoid by a local smooth coadmissible homotopy (or free derivation) for the crossed module case. The development also has to use corresponding notions for certain types of double groupoids. This leads to a holonomy Lie groupoid rather than double groupoid, but one which involves the 2-dimensional information. (C) 2003 Elsevier Inc. All rights reserved.en_US
dc.identifier.doi10.1016/S0001-8708(02)00074-9
dc.identifier.endpage175en_US
dc.identifier.issn0001-8708
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-0042428783en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage141en_US
dc.identifier.urihttps://doi.org/10.1016/S0001-8708(02)00074-9
dc.identifier.urihttps://hdl.handle.net/11616/93594
dc.identifier.volume178en_US
dc.identifier.wosWOS:000184648800004en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofAdvances in Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcrossed moduleen_US
dc.subjecthomotopyen_US
dc.subjectdouble groupoiden_US
dc.subjectlinear sectionen_US
dc.subjectLie groupoidsen_US
dc.subjectholonomyen_US
dc.titleTowards a 2-dimensional notion of holonomyen_US
dc.typeArticleen_US

Dosyalar