Classification of sleep apnea by using wavelet transform and artificial neural networks
Küçük Resim Yok
Tarih
2010
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Pergamon-Elsevier Science Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This paper describes a new method to classify sleep apnea syndrome (SAS) by using wavelet transforms and an artificial neural network (ANN) The network was trained and tested for different momentum coefficients. The abdominal respiration signals are separated into spectral components by using multi-resolution wavelet transforms. These spectral components are applied to the inputs of the artificial neural network. Then the neural network was configured to give three outputs to classify the SAS situation of the patient. The apnea can be broadly classified into three types. obstructive sleep apnea (OSA), central sleep apnea (CSA) and mixed sleep apnea (MSA). During OSA. the airway is blocked while respiratory efforts continue. During CSA the airway is open. however, there are no respiratory efforts In this paper we aim to classify sleep apnea in one of three basic types: obstructive, central and mixed. (C) 2009 Elsevier Ltd. Ail rights reserved.
Açıklama
Anahtar Kelimeler
Sleep apnea syndrome, Wavelet transform, Artificial neural networks, Abdominal effort signal
Kaynak
Expert Systems With Applications
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
37
Sayı
2