Warped product submanifolds of Lorentzian paracosymplectic manifolds

Küçük Resim Yok

Tarih

2012

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Heidelberg

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper we study the warped product submanifolds of a Lorentzian paracosymplectic manifold and obtain some nonexistence results. We show that a warped product semi-invariant submanifold in the form M = M-inverted perpendicular x (f) M-perpendicular to of a Lorentzian paracosymplectic manifold such that the characteristic vector field is normal to M is a usual Riemannian product manifold where totally geodesic and totally umbilical submanifolds of warped product are invariant and anti-invariant, respectively. We prove that the distributions involved in the definition of a warped product semi-invariant submanifold are always integrable. A necessary and sufficient condition for a semi-invariant submanifold of a Lorentzian paracosymplectic manifold to be warped product semi-invariant submanifold is obtained. We also investigate the existence and nonexistence of warped product semi-slant and warped product anti-slant submanifolds in a Lorentzian paracosymplectic manifold.

Açıklama

Anahtar Kelimeler

[No Keywords]

Kaynak

Arabian Journal of Mathematics

WoS Q Değeri

N/A

Scopus Q Değeri

Q3

Cilt

1

Sayı

3

Künye