Schouten and Vr?anceanu Connections on Golden Manifolds

dc.contributor.authorGök, Mustafa
dc.contributor.authorKeleş, Sadık
dc.contributor.authorKılıç, Erol
dc.date.accessioned2024-08-04T19:51:37Z
dc.date.available2024-08-04T19:51:37Z
dc.date.issued2019
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn this paper, we study two special linear connections, which are called Schouten and Vr?anceanuconnections, defined by an arbitrary fixed linear connection on a differentiable manifoldadmitting a golden structure. The golden structure defines two naturally complementary projectionoperators splitting the tangent bundle into two complementary parts, so there are two globallycomplementary distributions of the tangent bundle. We examine the conditions of parallelismfor both of the distributions with respect to the fixed linear connection under the assumptionthat it is either the Levi-Civita connection or is not. We investigate the concepts of halfparallelism and anti half parallelism for each of the distributions with respect to the Schoutenand Vr?anceanu connections. We research integrability conditions of the golden structure and itsassociated distributions from the viewpoint of the Schouten and Vr?anceanu connections. Finally,we analyze the notion of geodesicity on golden manifolds in terms of the Schouten and Vr?anceanuconnections.en_US
dc.identifier.endpage181en_US
dc.identifier.issn1307-5624
dc.identifier.issue2en_US
dc.identifier.startpage169en_US
dc.identifier.trdizinid331195en_US
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/331195
dc.identifier.urihttps://hdl.handle.net/11616/89098
dc.identifier.volume12en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Electronic Journal of Geometryen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSchouten and Vr?anceanu Connections on Golden Manifoldsen_US
dc.typeArticleen_US

Dosyalar