Fabric Defect Detection Using Customized Deep Convolutional Neural Network for Circular Knitting Fabrics
dc.contributor.author | Varjovi, Mahdi Hatami | |
dc.contributor.author | Talu, Muhammed Fatih | |
dc.contributor.author | Hanbay, Kazım | |
dc.date.accessioned | 2024-08-04T19:54:40Z | |
dc.date.available | 2024-08-04T19:54:40Z | |
dc.date.issued | 2022 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | Visual inspection is a main stage of quality assurance process in many applications. In this paper, we propose a new network architecture for detecting the fabric defects based on convolutional neural network. Four different pre-trained and customized model network architectures have compared in terms of performance. Results has been evaluated on a fabric defect dataset of 13.800 images. Among the existing Inception V3, MobileNetV2, Xception and ResNet50 methods, the InceptionV3 model has achieved 78% classification success. Our designed deep network model could achieve 97% success. The experimental works show that the designed deep model is effective in detecting the fabric defects. | en_US |
dc.identifier.doi | 10.46810/tdfd.1108264 | |
dc.identifier.endpage | 165 | en_US |
dc.identifier.issn | 2149-6366 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 160 | en_US |
dc.identifier.trdizinid | 1127670 | en_US |
dc.identifier.uri | https://doi.org/10.46810/tdfd.1108264 | |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/1127670 | |
dc.identifier.uri | https://hdl.handle.net/11616/90036 | |
dc.identifier.volume | 11 | en_US |
dc.indekslendigikaynak | TR-Dizin | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Türk Doğa ve Fen Dergisi | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.title | Fabric Defect Detection Using Customized Deep Convolutional Neural Network for Circular Knitting Fabrics | en_US |
dc.type | Article | en_US |