A note on applications of time-domain solution of Cole permittivity models

dc.authoridAlagoz, Serkan/0000-0003-2642-8462
dc.authoridHafiz, Alisoy/0000-0003-4374-9559
dc.authoridAlagoz, Baris Baykant/0000-0001-5238-6433
dc.authorwosidG, a/JVM-9165-2024
dc.authorwosidG, Alisoy/ABA-7258-2020
dc.authorwosidAlagoz, Serkan/ABI-2130-2020
dc.authorwosidHafiz, Alisoy/ABA-7256-2020
dc.authorwosidAlagoz, Baris Baykant/ABG-8526-2020
dc.contributor.authorAlagoz, Bads Baykant
dc.contributor.authorAlisoy, Gulizar
dc.contributor.authorAlagoz, Serkan
dc.contributor.authorAlisoy, Hafiz
dc.date.accessioned2024-08-04T20:43:07Z
dc.date.available2024-08-04T20:43:07Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThe complex dielectric permittivity is an important parameter for characterization of electrical properties of dielectric materials. Experimental studies demonstrated that Cole models of dielectric permittivity can provide a better fitting to the experimental data because of allowing for fractional-order frequency dependence. This study aims to investigate physical interpretation of time domain solutions of Cole permittivity models. For this purpose, impulse responses of Cole-Cole model and Davidson-Cole model are expressed in Mittag-Leffler function form by using inverse Laplace transform. The impulse responses of these models are decomposed into impulsive and dispersive components, and the relations of these components with relaxation mechanism of dielectric materials are discussed. By considering impulse response solution of Cole-Cole models, a fractional order dynamic capacitance model is introduced for time domain equivalent circuit modeling of dielectric materials. Moreover, transient properties of electromagnetic wave penetration to dielectric materials are analyzed according to impulse response solution of Cole-Cole model. To illustrate applications of proposed time domain permittivity solutions, the Cole-Cole model of ethyl-acetate liquids was also studied and results are presented. (C) 2017 Elsevier GmbH. All rights reserved.en_US
dc.identifier.doi10.1016/j.ijleo.2017.04.010
dc.identifier.endpage282en_US
dc.identifier.issn0030-4026
dc.identifier.issn1618-1336
dc.identifier.scopus2-s2.0-85018449486en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage272en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijleo.2017.04.010
dc.identifier.urihttps://hdl.handle.net/11616/97794
dc.identifier.volume139en_US
dc.identifier.wosWOS:000402942800033en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Gmbhen_US
dc.relation.ispartofOptiken_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDielectric permittivityen_US
dc.subjectCole-Cole modelen_US
dc.subjectDavidson-Cole modelen_US
dc.subjectFractional order dynamic capacitance modelingen_US
dc.subjectElectric field flux densityen_US
dc.subjectWave impedanceen_US
dc.titleA note on applications of time-domain solution of Cole permittivity modelsen_US
dc.typeArticleen_US

Dosyalar