Determining relevant features in estimating short-term power load of a small house via feature selection by extreme learning machine
dc.authorid | ERTUGRUL, Ömer Faruk/0000-0003-0710-0867 | |
dc.authorid | Tağluk, M. Emin/0000-0001-7789-6376 | |
dc.authorid | Öztekin, Abdulkerim/0000-0002-0698-3525 | |
dc.authorwosid | ERTUGRUL, Ömer Faruk/F-7057-2015 | |
dc.authorwosid | Tağluk, M. Emin/ABH-1005-2020 | |
dc.authorwosid | Öztekin, Abdulkerim/ABA-6749-2020 | |
dc.contributor.author | Ertugrul, Omer Faruk | |
dc.contributor.author | Sezgin, Necmettin | |
dc.contributor.author | Oztekin, Abdulkerim | |
dc.contributor.author | Tagluk, Mehmet Emin | |
dc.date.accessioned | 2024-08-04T20:44:11Z | |
dc.date.available | 2024-08-04T20:44:11Z | |
dc.date.issued | 2017 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description | 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEY | en_US |
dc.description.abstract | Estimating short-term power load is a fundamental issue in the power distribution system. Since short-term power load is related to many parameters such as weather conditions, and time. The aim of this study is to determine the relevant parameters in estimating short-term power load not only in order to decrease the computational cost, but also to achieve higher success rates. Furthermore, by using selected features the required memory, equipment and communication costs are also decreased in real time applications. Feature selection by extreme learning machine method was used in determining relevant features. The short-term power loads of two houses (one of them has a power generation capability) were used in tests and achieved results showed lower error rates were obtained by using less number of features. | en_US |
dc.description.sponsorship | IEEE Turkey Sect,Anatolian Sci | en_US |
dc.identifier.isbn | 978-1-5386-1880-6 | |
dc.identifier.scopus | 2-s2.0-85039913283 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://hdl.handle.net/11616/98086 | |
dc.identifier.wos | WOS:000426868700185 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2017 International Artificial Intelligence and Data Processing Symposium (Idap) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Short-term power load | en_US |
dc.subject | feature selection | en_US |
dc.subject | extreme learning machine | en_US |
dc.title | Determining relevant features in estimating short-term power load of a small house via feature selection by extreme learning machine | en_US |
dc.type | Conference Object | en_US |