An effective integrated genetic programming and neural network model for electronic nose calibration of air pollution monitoring application

dc.authoridAri, Davut/0000-0001-6439-7957
dc.authoridAlagoz, Baris Baykant/0000-0001-5238-6433
dc.authorwosidAri, Davut/GPX-1182-2022
dc.authorwosidAlagoz, Baris Baykant/ABG-8526-2020
dc.contributor.authorAri, Davut
dc.contributor.authorAlagoz, Baris Baykant
dc.date.accessioned2024-08-04T20:51:45Z
dc.date.available2024-08-04T20:51:45Z
dc.date.issued2022
dc.departmentİnönü Üniversitesien_US
dc.description.abstractAir quality control requires real-time monitoring of pollutant concentration distributions in large urban areas. Estimation models are used for the soft-calibration of low-cost multisensor data to improve precision of pollutant concentration measurements. This study introduces an integrated genetic programming dynamic neural network model for more accurate estimation of carbon monoxide and nitrogen dioxide pollutant concentrations from the multisensor measurement data. This model combines a genetic programming-based estimation model with a neural estimator model and improves estimation performances. In this structure, a genetic programming-based polynomial model works as a former estimator and it feeds the neural estimator model via a short-term former estimation memory. Then, the neural model utilizes this former estimation memory in order to enhance pollutant concentration estimations. This integration approach benefits from the correlation enrichment strategy that is performed by the former model. The proposed two-stage training procedure facilitates the training of the integrated models. In experimental study, the standalone genetic programming model, artificial neural network model, and the proposed integrated model are implemented to estimate carbon monoxide and nitrogen dioxide pollutant concentrations from the experimental multisensor air quality data. Results demonstrate that the proposed integrated model can decrease mean relative error about 10% compared to the standalone artificial neural network and about 28% compared to the standalone genetic programming estimation models. Authors suggested that the integrated estimation model can be used for more accurate soft-calibration of multisensor electronic noses in a wide-area air-quality monitoring application.en_US
dc.identifier.doi10.1007/s00521-022-07129-0
dc.identifier.endpage12652en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue15en_US
dc.identifier.scopus2-s2.0-85126183018en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage12633en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-022-07129-0
dc.identifier.urihttps://hdl.handle.net/11616/100531
dc.identifier.volume34en_US
dc.identifier.wosWOS:000768660400012en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofNeural Computing & Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAir quality electronic noseen_US
dc.subjectGenetic programmingen_US
dc.subjectNeural estimatoren_US
dc.subjectSensor calibrationen_US
dc.titleAn effective integrated genetic programming and neural network model for electronic nose calibration of air pollution monitoring applicationen_US
dc.typeArticleen_US

Dosyalar