Production of V-Doped P2-type Na0.67Mn0.5Fe0.43Al0.07O2 Cathodes and Investigation of Na-Ion Full Cells Performance

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley-V C H Verlag Gmbh

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The Na0.67Mn0.5Fe0.43Al0.07O2(x = 0-0.1) samples are successfully produced and their structural properties are investigated by common techniques. The highest surface area is found as 4.94 m(2) g(-1) for x = 0.04 V by the Brunauer-Elmet-Teller analysis. According to X-ray photoelectron spectroscopy of x = 0.04 V-doped sample,V4+, and V5+ ions are formed in the structure. The main phase is observed as P63/mmc symmetry with an impurity phase of V6O13 for x >= 0.06 . According to the CV analysis, while the redox voltage decreases for the Mn3+/Mn4+ , the intensity of the peaks of Fe2+/Fe3+ redox reaction decreases. While the best capacity value of the half cells at C/3-rate is obtained as 171 mAh g(-1) for x = 0.04, the lowest capacity fade is found for x = 0.08 . It is mentioned the V6O13 may contribute to the electrochemical process . The galvanostatic tests are investigated for the voltage windows of 3.5-1.5, 4-1.5, 4-2.5, 4-2, and 4-2.5 V and it is seen that the battery cells for 3.5-1.5 V have the best capacity fade (6%) among the others. The Na0.67Mn0.5Fe0.43Al0.07O2/ hard carbon is used for the full cells with presodiated anode and the first capacity value of the full cell is obtained as 80.2 mAh g(-1) for C/2-rate.

Açıklama

Anahtar Kelimeler

Na0.67Mn0.5Fe0.5O2, Na-ion full cell, P63/mmc, V-doped

Kaynak

Energy Technology

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

12

Sayı

1

Künye