An integer order approximation method based on stability boundary locus for fractional order derivative/integrator operators

dc.authoridTan, Nusret/0000-0002-1285-1991
dc.authoridAlagoz, Baris Baykant/0000-0001-5238-6433
dc.authoridDeniz, Furkan Nur/0000-0002-2524-7152
dc.authorwosidTan, Nusret/ABG-8122-2020
dc.authorwosidAlagoz, Baris Baykant/ABG-8526-2020
dc.authorwosidDeniz, Furkan Nur/ABB-9604-2020
dc.contributor.authorDeniz, Furkan Nur
dc.contributor.authorAlagoz, Baris Baykant
dc.contributor.authorTan, Nusret
dc.contributor.authorAtherton, Derek P.
dc.date.accessioned2024-08-04T20:41:46Z
dc.date.available2024-08-04T20:41:46Z
dc.date.issued2016
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThis paper introduces an integer order approximation method for numerical implementation of fractional order derivative/integrator operators in control systems. The proposed method is based on fitting the stability boundary locus (SBL) of fractional order derivative/integrator operators and SBL of integer order transfer functions. SBL defines a boundary in the parametric design plane of controller, which separates stable and unstable regions of a feedback control system and SBL analysis is mainly employed to graphically indicate the choice of controller parameters which result in stable operation of the feedback systems. This study reveals that the SBL curves of fractional order operators can be matched with integer order models in a limited frequency range. SBL fitting method provides straightforward solutions to obtain an integer order model approximation of fractional order operators and systems according to matching points from SBL of fractional order systems in desired frequency ranges. Thus, the proposed method can effectively deal with stability preservation problems of approximate models. Illustrative examples are given to show performance of the proposed method and results are compared with the well-known approximation methods developed for fractional order systems. The integer-order approximate modeling of fractional order PID controllers is also illustrated for control applications. (C) 2016 ISA. Published by Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.isatra.2016.01.020
dc.identifier.endpage163en_US
dc.identifier.issn0019-0578
dc.identifier.issn1879-2022
dc.identifier.pmid26876378en_US
dc.identifier.scopus2-s2.0-84968830426en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage154en_US
dc.identifier.urihttps://doi.org/10.1016/j.isatra.2016.01.020
dc.identifier.urihttps://hdl.handle.net/11616/97326
dc.identifier.volume62en_US
dc.identifier.wosWOS:000378187500018en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofIsa Transactionsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional order operatorsen_US
dc.subjectInteger order approximationen_US
dc.subjectFractional order control systemen_US
dc.subjectStability boundary locusen_US
dc.titleAn integer order approximation method based on stability boundary locus for fractional order derivative/integrator operatorsen_US
dc.typeArticleen_US

Dosyalar