. IMPROVED PENALTY STRATEGIES in LINEAR REGRESSION MODELS

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Inst Nacional Estatistica-Ine

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

We suggest pretest and shrinkage ridge estimation strategies for linear regression models. We investigate the asymptotic properties of suggested estimators. Further, a Monte Carlo simulation study is conducted to assess the relative performance of the listed estimators. Also, we numerically compare their performance with Lasso, adaptive Lasso and SCAD strategies. Finally, a real data example is presented to illustrate the usefulness of the suggested methods.

Açıklama

Anahtar Kelimeler

Sub-model, Full Model, Pretest and Shrinkage Estimation, Multicollinearity, Asymp-totic and Simulation

Kaynak

Revstat-Statistical Journal

WoS Q Değeri

Q4

Scopus Q Değeri

Cilt

15

Sayı

2

Künye