. IMPROVED PENALTY STRATEGIES in LINEAR REGRESSION MODELS
dc.authorid | Yuzbasi, Bahadir/0000-0002-6196-3201 | |
dc.authorid | Güngör, Mehmet/0000-0001-6869-4043 | |
dc.authorwosid | Ahmed, Syed/GSN-7305-2022 | |
dc.authorwosid | Yuzbasi, Bahadir/F-6907-2013 | |
dc.authorwosid | Güngör, Mehmet/ABI-7228-2020 | |
dc.contributor.author | Yuzbasi, Bahadir | |
dc.contributor.author | Ahmed, S. Ejaz | |
dc.contributor.author | Gungor, Mehmet | |
dc.date.accessioned | 2024-08-04T20:56:14Z | |
dc.date.available | 2024-08-04T20:56:14Z | |
dc.date.issued | 2017 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | We suggest pretest and shrinkage ridge estimation strategies for linear regression models. We investigate the asymptotic properties of suggested estimators. Further, a Monte Carlo simulation study is conducted to assess the relative performance of the listed estimators. Also, we numerically compare their performance with Lasso, adaptive Lasso and SCAD strategies. Finally, a real data example is presented to illustrate the usefulness of the suggested methods. | en_US |
dc.description.sponsorship | Scientific and Research Council of Turkey [TubitakBideb-2214/A]; Brock University in Canada; Natural Sciences and the Engineering Research Council of Canada (NSERC) | en_US |
dc.description.sponsorship | The authors thank the Associate Editor and two anonymous referees for their valuable comments that improved the paper. Bahadir Yuzbasi was supported by The Scientific and Research Council of Turkey under grant TubitakBideb-2214/A during this study at Brock University in Canada, and S. Ejaz Ahmed is supported by the Natural Sciences and the Engineering Research Council of Canada (NSERC). | en_US |
dc.identifier.endpage | 276 | en_US |
dc.identifier.issn | 1645-6726 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 251 | en_US |
dc.identifier.uri | https://hdl.handle.net/11616/102152 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000400670400005 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Inst Nacional Estatistica-Ine | en_US |
dc.relation.ispartof | Revstat-Statistical Journal | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Sub-model | en_US |
dc.subject | Full Model | en_US |
dc.subject | Pretest and Shrinkage Estimation | en_US |
dc.subject | Multicollinearity | en_US |
dc.subject | Asymp-totic and Simulation | en_US |
dc.title | . IMPROVED PENALTY STRATEGIES in LINEAR REGRESSION MODELS | en_US |
dc.type | Article | en_US |