Apricot Disease Identification based on Attributes Obtained from Deep Learning Algorithms
Küçük Resim Yok
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ieee
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In recent years, deep learning widely used in image processing field, has introduced many new applications related to the agricultural field. In this study, for apricot disease detection were used deep learning models such as AlexNet, Vgg16, and Vgg19 based on pre-trained deep Convolutional Neural Networks (CNN). The deep attributes obtained from these models are classified by K-Nearest Neighbour (KNN) method. To calculate the performance of the proposed methods was applied 10- fold cross-validation test. The dataset consists of 960 images including healthy and diseased apricot images. According to the obtained results, the highest accuracy was obtained as 94.8% by using Vgg16 model.
Açıklama
International Conference on Artificial Intelligence and Data Processing (IDAP) -- SEP 28-30, 2018 -- Inonu Univ, Malatya, TURKEY
Anahtar Kelimeler
Apricot Disease Detection, Convolutional Neural Networks, AlexNet Model, VggNet Model, KNN Classifier
Kaynak
2018 International Conference on Artificial Intelligence and Data Processing (Idap)
WoS Q Değeri
N/A
Scopus Q Değeri
N/A