Predicting House Prices Using DMA Method: Evidence from Turkey

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The aim of this study is to analyze the dynamics of the housing market in Turkey's economy and to examine the impact of variables related to housing prices. Preferred by many international housing investors, Turkey hosts profitable real estate investments as one of the developing countries with a shining housing market. This study applies the dynamic model averaging (DMA) methodology to predict monthly house price growth. With the increasing use of information technologies, Google online searches are incorporated into the study. For this purpose, twelve independent variables, with the Residential Property Price Index as the dependent variable, were used in the period January 2010-December 2019. According to the analysis results, it was observed that some variables, such as bond yields, the level of mortgages, foreign direct investments, unemployment, industrial production, exchange rates, and Google Trends index, are determinants of the Residential Property Price Index.

Açıklama

Anahtar Kelimeler

housing price prediction, RPPI, DMA, Google Trends index, Turkey

Kaynak

Economies

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

10

Sayı

3

Künye