A new outlook for analysis of Noyes-Field model for the nonlinear Belousov-Zhabotinsky reaction using operator splitting method
dc.authorid | Karaagac, Berat/0000-0002-6020-3243 | |
dc.authorid | YAĞMURLU, Nuri Murat/0000-0003-1593-0254 | |
dc.authorwosid | Karaagac, Berat/E-6311-2019 | |
dc.authorwosid | YAĞMURLU, Nuri Murat/AAB-8514-2020 | |
dc.contributor.author | Karaagac, Berat | |
dc.contributor.author | Esen, Alaattin | |
dc.contributor.author | Ucar, Yusuf | |
dc.contributor.author | Yagmurlu, Nuri Murat | |
dc.date.accessioned | 2024-08-04T20:53:27Z | |
dc.date.available | 2024-08-04T20:53:27Z | |
dc.date.issued | 2023 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | The main idea of this paper is to investigate numerical solutions of Noyes Field model for Belousov-Zhabotinsky reaction by implementing the combination of two well-known numerical techniques. The proposed methods are collocation method based on finite elements, which is a useful and very flexible approach for solving partial differential equations (PDE), and operator splitting method which is a widely used procedure in the numerical solution of initial and boundary value problems for PDEs. Especially, for this paper, the application of collocation methods are based on trigonometric cubic B-splines. With the help of two techniques discrete schemes are investigated. Next, we presented stability of discrete schemes with Von- Neumann stability analysis. Also, we present the result of applying methods to Noyes Field model and the error norms L-2 and L-infinity to show how accurate numerical solutions to exact ones and graphical representations associated numerical results are shown. | en_US |
dc.identifier.doi | 10.1016/j.camwa.2023.02.009 | |
dc.identifier.endpage | 135 | en_US |
dc.identifier.issn | 0898-1221 | |
dc.identifier.issn | 1873-7668 | |
dc.identifier.scopus | 2-s2.0-85148686888 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 127 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.camwa.2023.02.009 | |
dc.identifier.uri | https://hdl.handle.net/11616/101186 | |
dc.identifier.volume | 136 | en_US |
dc.identifier.wos | WOS:000990776100001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Computers & Mathematics With Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Noyes-Field model | en_US |
dc.subject | Collocation method | en_US |
dc.subject | Trigonometric B-spline basis | en_US |
dc.subject | Stability analysis | en_US |
dc.title | A new outlook for analysis of Noyes-Field model for the nonlinear Belousov-Zhabotinsky reaction using operator splitting method | en_US |
dc.type | Article | en_US |