A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrodinger equation

dc.authoridUÇAR, Yusuf/0000-0003-1469-5002
dc.authoridKarakoc, Seydi Battal Gazi/0000-0002-2348-4170
dc.authoridBaşhan, Ali/0000-0001-8500-493X
dc.authoridYAĞMURLU, Nuri Murat/0000-0003-1593-0254
dc.authoridEsen, Alaattin/0000-0002-7927-5941
dc.authorwosidUÇAR, Yusuf/ABG-8562-2020
dc.authorwosidKarakoc, Seydi Battal Gazi/AFB-6984-2022
dc.authorwosidBaşhan, Ali/R-6644-2018
dc.authorwosidYAĞMURLU, Nuri Murat/AAB-8514-2020
dc.authorwosidEsen, Alaattin/ABE-5694-2021
dc.contributor.authorBashan, Ali
dc.contributor.authorUcar, Yusuf
dc.contributor.authorYagmurlu, N. Murat
dc.contributor.authorEsen, Alaattin
dc.date.accessioned2024-08-04T20:44:15Z
dc.date.available2024-08-04T20:44:15Z
dc.date.issued2018
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn the present paper, a Crank-Nicolson-differential quadrature method (CN-DQM) based on utilizing quintic B-splines as a tool has been carried out to obtain the numerical solutions for the nonlinear Schrodinger (NLS) equation. For this purpose, first of all, the Schrodinger equation has been converted into coupled real value differential equations and then they have been discretized using both the forward difference formula and the Crank-Nicolson method. After that, Rubin and Graves linearization techniques have been utilized and the differential quadrature method has been applied to obtain an algebraic equation system. Next, in order to be able to test the efficiency of the newly applied method, the error norms, L-2 and L-infinity, as well as the two lowest invariants, I-1 and I-2, have been computed. Besides those, the relative changes in those invariants have been presented. Finally, the newly obtained numerical results have been compared with some of those available in the literature for similar parameters. This comparison clearly indicates that the currently utilized method, namely CN-DQM, is an effective and efficient numerical scheme and allows us to propose to solve a wide range of nonlinear equations.en_US
dc.identifier.doi10.1140/epjp/i2018-11843-1
dc.identifier.issn2190-5444
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85040831506en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1140/epjp/i2018-11843-1
dc.identifier.urihttps://hdl.handle.net/11616/98124
dc.identifier.volume133en_US
dc.identifier.wosWOS:000423306700003en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofEuropean Physical Journal Plusen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinite-Element-Methoden_US
dc.subjectSolitonen_US
dc.titleA new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrodinger equationen_US
dc.typeArticleen_US

Dosyalar