A study on some paranormed sequence spaces due to Lambda-Pascal matrix
dc.authorid | Yaying, Taja/0000-0003-3435-8417 | |
dc.contributor.author | Yaying, Taja | |
dc.contributor.author | Basar, Feyzi | |
dc.date.accessioned | 2024-08-04T20:55:54Z | |
dc.date.available | 2024-08-04T20:55:54Z | |
dc.date.issued | 2024 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | This paper delves into the examination of algebraic and topological attributes associated with the domains c0(G,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(G,q)$$\end{document}, c(G, q), and l infinity(G,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty (G,q)$$\end{document} pertaining to the Lambda-Pascal matrix G in Maddox's spaces c0(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(q)$$\end{document}, c(q), and l infinity(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty (q)$$\end{document}, respectively. The determination of the Schauder basis and the computation of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-, and gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-duals for these Lambda-Pascal paranormed spaces are carried out. The ultimate section is dedicated to elucidating the classification of the matrix classes (l infinity(G,q),l infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell _{\infty }(G,q),\ell _{\infty })$$\end{document}, (l infinity(G,q),f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell _{\infty }(G,q),f)$$\end{document}, and (l infinity(G,q),c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell _{\infty }(G,q),c)$$\end{document}, concurrently presenting the characterization of specific other sets of matrix transformations in the space l infinity(G,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{\infty }(G,q)$$\end{document} as corollaries derived from the primary outcomes. | en_US |
dc.identifier.doi | 10.1007/s44146-024-00124-y | |
dc.identifier.issn | 0001-6969 | |
dc.identifier.issn | 2064-8316 | |
dc.identifier.scopus | 2-s2.0-85188712631 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s44146-024-00124-y | |
dc.identifier.uri | https://hdl.handle.net/11616/101898 | |
dc.identifier.wos | WOS:001191029000001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Birkhauser | en_US |
dc.relation.ispartof | Acta Scientiarum Mathematicarum | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Sequence space | en_US |
dc.subject | Lambda-Pascal matrix | en_US |
dc.subject | Schauder basis | en_US |
dc.subject | Alpha-, Beta- and Gamma-duals | en_US |
dc.subject | Matrix transformations | en_US |
dc.title | A study on some paranormed sequence spaces due to Lambda-Pascal matrix | en_US |
dc.type | Article | en_US |