A study on some paranormed sequence spaces due to Lambda-Pascal matrix

dc.authoridYaying, Taja/0000-0003-3435-8417
dc.contributor.authorYaying, Taja
dc.contributor.authorBasar, Feyzi
dc.date.accessioned2024-08-04T20:55:54Z
dc.date.available2024-08-04T20:55:54Z
dc.date.issued2024
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThis paper delves into the examination of algebraic and topological attributes associated with the domains c0(G,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(G,q)$$\end{document}, c(G, q), and l infinity(G,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty (G,q)$$\end{document} pertaining to the Lambda-Pascal matrix G in Maddox's spaces c0(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(q)$$\end{document}, c(q), and l infinity(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty (q)$$\end{document}, respectively. The determination of the Schauder basis and the computation of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-, and gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-duals for these Lambda-Pascal paranormed spaces are carried out. The ultimate section is dedicated to elucidating the classification of the matrix classes (l infinity(G,q),l infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell _{\infty }(G,q),\ell _{\infty })$$\end{document}, (l infinity(G,q),f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell _{\infty }(G,q),f)$$\end{document}, and (l infinity(G,q),c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell _{\infty }(G,q),c)$$\end{document}, concurrently presenting the characterization of specific other sets of matrix transformations in the space l infinity(G,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{\infty }(G,q)$$\end{document} as corollaries derived from the primary outcomes.en_US
dc.identifier.doi10.1007/s44146-024-00124-y
dc.identifier.issn0001-6969
dc.identifier.issn2064-8316
dc.identifier.scopus2-s2.0-85188712631en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.urihttps://doi.org/10.1007/s44146-024-00124-y
dc.identifier.urihttps://hdl.handle.net/11616/101898
dc.identifier.wosWOS:001191029000001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Birkhauseren_US
dc.relation.ispartofActa Scientiarum Mathematicarumen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSequence spaceen_US
dc.subjectLambda-Pascal matrixen_US
dc.subjectSchauder basisen_US
dc.subjectAlpha-, Beta- and Gamma-dualsen_US
dc.subjectMatrix transformationsen_US
dc.titleA study on some paranormed sequence spaces due to Lambda-Pascal matrixen_US
dc.typeArticleen_US

Dosyalar