Multiresolution decomposition of quantum field theories using wavelet bases

dc.authoridBulut, Fatih/0000-0001-6603-2468
dc.authoridPolyzou, Wayne Nicholas/0000-0001-9014-1250
dc.authorwosidBulut, Fatih/F-7201-2013
dc.authorwosidPolyzou, Wayne Nicholas/KEH-2262-2024
dc.contributor.authorMichlin, Tracie
dc.contributor.authorPolyzou, W. N.
dc.contributor.authorBulut, Fatih
dc.date.accessioned2024-08-04T20:43:11Z
dc.date.available2024-08-04T20:43:11Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description.abstractWe investigate both the theoretical and computational aspects of using wavelet bases to perform an exact decomposition of a local field theory by spatial resolution. The decomposition admits natural volume and resolution truncations. We demonstrate that flow equation methods can be used to eliminate short-distance degrees of freedom in truncated theories. The method is tested on a free scalar field in one dimension, where the spatial derivatives couple the degrees of freedom on different scales, although the method is applicable to more complex field theories. The flow equation method is shown to decouple both distance and energy scales in this example. The response to changing the volume and resolution cutoffs and the mass is discussed.en_US
dc.description.sponsorshipU. S. Department of Energy, Office of Nuclear Physics [DE-SC0016457]; University of Iowa; U.S. Department of Energy (DOE) [DE-SC0016457] Funding Source: U.S. Department of Energy (DOE)en_US
dc.description.sponsorshipThe authors would like to thank Robert Perry and Mikhail Altaisky for valuable feedback on this work. We are also indebted to the referee, who provided additional feedback and who pointed out the elegant method form computing the overlap integrals due to Beylkin. This work was performed under the auspices of the U. S. Department of Energy, Office of Nuclear Physics, Award No. DE-SC0016457 with the University of Iowa.en_US
dc.identifier.doi10.1103/PhysRevD.95.094501
dc.identifier.issn1550-7998
dc.identifier.issn1550-2368
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85020091812en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1103/PhysRevD.95.094501
dc.identifier.urihttps://hdl.handle.net/11616/97836
dc.identifier.volume95en_US
dc.identifier.wosWOS:000400668300002en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAmer Physical Socen_US
dc.relation.ispartofPhysical Review Den_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRenormalization-Groupen_US
dc.subjectStatistical-Mechanicsen_US
dc.titleMultiresolution decomposition of quantum field theories using wavelet basesen_US
dc.typeArticleen_US

Dosyalar