Investigation of structural and electrochemical performance of Ru-substituted LiFePO4 cathode material: an improvement of the capacity and rate performance
Küçük Resim Yok
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
LiRuxFe1-xPO4 (where x = 0.01-0.12) samples are successfully fabricated by conventional solid-state reaction technique and the structural properties are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and fourier transform infrared spectroscopy (FTIR) measurements. The XRD analysis shows that the minor impurity phases of RuO2 and LiRuO2 are observed for x >= 0.05 samples. Furthermore, the lattice volume is decreased with increasing Ru-content in the structure. The Ru-substituted battery cells exhibit similar cycling voltammetry (CV) data with the unsubstituted LiFePO4 battery cells. According to the charging/discharging cycles measurements for C/3-rate, the best capacity (147.58 mAh g(-1)) is obtained for LiFe0.93Ru0.07PO4 with a capacity fade of 0.0084 per cycle. It is found that Ru-substituted LiFePO4 has maximum C-rate when we analogize with the pristine LiFePO4 and the battery cycling performance is investigated for 4 C-rate up to 100 cycles and 3 and 4 C-rate up to 1000 cycles and it is found that Ru-substituted LiFePO4 exhibits excellent electrochemical performance such as 122, 84.5, and 53.1 mAh g(-1) for 1st, 500th, and 1000th cycles at 4 C-rate.
Açıklama
Anahtar Kelimeler
Lithium Iron Phosphate, Rate Capability, Batteries, Lini0.5mn1.5o4, Behavior, Carbon, Mg
Kaynak
Journal of Materials Science-Materials in Electronics
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
33
Sayı
9