Parameter Analysis of Convolutional Neural Network Operated on Embedded Platform for Estimation of Combustion Efficiency in Coal Burners

dc.contributor.authorGündüzalp, Veysel
dc.contributor.authorÇelik, Gaffari
dc.contributor.authorTalu, Muhammed Fatih
dc.contributor.authorOnat, Cem
dc.date.accessioned2024-08-04T19:54:40Z
dc.date.available2024-08-04T19:54:40Z
dc.date.issued2023
dc.departmentİnönü Üniversitesien_US
dc.description.abstractAccurately and effectively calculating combustion efficiency in coal burners is crucial for industrial boiler manufacturers. Two main approaches can be used to calculate boiler efficiency: 1) Analyzing the gas emitted from the flue; 2) Visualizing the combustion chamber in the boiler. Flue gas analyzers, which are not user-friendly, come with high costs. Additionally, the physical distance between the flue and the combustion chamber causes the measurement to be delayed. Methods based on visualizing the combustion chamber do not have these disadvantages. This study proposes a system based on visualizing the combustion chamber and has two contributions to the literature: 1) for the first time, the modern Convolutional Neural Networks (CNN) approach is used to estimate combustion efficiency; 2) the CNN architecture with optimal parameters can work on an embedded platform. When classical classification techniques and a CPU-supported processor card are used, efficiency can be calculated from one flame image in 1.7 seconds, while this number increases to approximately 20 frames per second (34 times faster) when the proposed CNN architecture and GPU-supported processor card are used. The results obtained demonstrate the superiority of the proposed CNN architecture and hardware over classical approaches in estimating coal boiler combustion efficiency.en_US
dc.identifier.doi10.46810/tdfd.1190216
dc.identifier.endpage54en_US
dc.identifier.issn2149-6366
dc.identifier.issue2en_US
dc.identifier.startpage48en_US
dc.identifier.trdizinid1191925en_US
dc.identifier.urihttps://doi.org/10.46810/tdfd.1190216
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1191925
dc.identifier.urihttps://hdl.handle.net/11616/90038
dc.identifier.volume12en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofTürk Doğa ve Fen Dergisien_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleParameter Analysis of Convolutional Neural Network Operated on Embedded Platform for Estimation of Combustion Efficiency in Coal Burnersen_US
dc.typeArticleen_US

Dosyalar