Semi-slant Riemannian maps into almost Hermitian manifolds

dc.authoridSahin, Bayram/0000-0002-9372-1151
dc.authorwosidSahin, Bayram/AAG-7872-2021
dc.contributor.authorPark, Kwang-Soon
dc.contributor.authorSahin, Bayram
dc.date.accessioned2024-08-04T20:41:36Z
dc.date.available2024-08-04T20:41:36Z
dc.date.issued2014
dc.departmentİnönü Üniversitesien_US
dc.description.abstractWe introduce semi-slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds as a generalization of semi-slant immersions, invariant Riemannian maps, anti-invariant Riemannian maps and slant Riemannian maps. We obtain characterizations, investigate the harmonicity of such maps and find necessary and sufficient conditions for semi-slant Riemannian maps to be totally geodesic. Then we relate the notion of semi-slant Riemannian maps to the notion of pseudo-horizontally weakly conformal maps, which are useful for proving various complex-analytic properties of stable harmonic maps from complex projective space and give many examples of such maps.en_US
dc.identifier.doi10.1007/s10587-014-0152-3
dc.identifier.endpage1061en_US
dc.identifier.issn0011-4642
dc.identifier.issn1572-9141
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84961332060en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage1045en_US
dc.identifier.urihttps://doi.org/10.1007/s10587-014-0152-3
dc.identifier.urihttps://hdl.handle.net/11616/97229
dc.identifier.volume64en_US
dc.identifier.wosWOS:000349028600013en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofCzechoslovak Mathematical Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRiemannian mapen_US
dc.subjectsemi-slant Riemannian mapen_US
dc.subjectharmonic mapen_US
dc.subjecttotally geodesic mapen_US
dc.titleSemi-slant Riemannian maps into almost Hermitian manifoldsen_US
dc.typeArticleen_US

Dosyalar