Comparison of control algorithms for the blood glucose concentration in a virtual patient with an artificial pancreas

Küçük Resim Yok

Tarih

2012

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

To obtain the most suitable control algorithm for a wearable artificial pancreas, different control algorithms were compared and tested using a Hovorka model. Model predictive control (MPC), linear and nonlinear model forms, proportional integral derivative control (PID), neural-network-based model predictive control (NN-MPC), nonlinear autoregressive moving average (NARMA-L2) and sequential quadratic programming (SQP) were evaluated using the Hovorka model. Due to the fact that modeling of biomedical processes are very complex, to present the most effective control algorithm, various control strategies were needed to application. In the control algorithms, set point tracking and disturbance rejection were performed. With respect to the rise times of the control algorithms, SQP with optimal control had the shortest time, and NARMA-L2 had the longest time. Because the control algorithm connects the glucose meter and the insulin pump in an artificial pancreas, the rise time is the most important parameter. We propose that optimal control with SQP is the most suitable control algorithm to connect the glucose meter and the insulin pump. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Blood glucose control algorithms, MPC, PID, NARMA-L2, NN-MPC, SQP

Kaynak

Chemical Engineering Research & Design

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

90

Sayı

7

Künye