An effective approach to numerical soliton solutions for the Schrodinger equation via modified cubic B-spline differential quadrature method

dc.authoridBaşhan, Ali/0000-0001-8500-493X
dc.authoridEsen, Alaattin/0000-0002-7927-5941
dc.authoridUÇAR, Yusuf/0000-0003-1469-5002
dc.authoridYAĞMURLU, Nuri Murat/0000-0003-1593-0254
dc.authoridKarakoc, Seydi Battal Gazi/0000-0002-2348-4170
dc.authorwosidBaşhan, Ali/R-6644-2018
dc.authorwosidEsen, Alaattin/ABE-5694-2021
dc.authorwosidUÇAR, Yusuf/ABG-8562-2020
dc.authorwosidYAĞMURLU, Nuri Murat/AAB-8514-2020
dc.authorwosidKarakoc, Seydi Battal Gazi/AFB-6984-2022
dc.contributor.authorBashan, Ali
dc.contributor.authorYagmurlu, Nuri Murat
dc.contributor.authorUcar, Yusuf
dc.contributor.authorEsen, Alaattin
dc.date.accessioned2024-08-04T20:43:06Z
dc.date.available2024-08-04T20:43:06Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn this study, an effective differential quadrature method (DQM) which is based on modified cubic B-spline (MCB) has been implemented to obtain the numerical solutions for the nonlinear Schrodinger (NLS) equation. After separating the Schrodinger equation into coupled real value differential equations,we have discretized using DQM and then obtained ordinary differential equation systems. For time integration, low storage strong stability-preserving Runge-Kutta method has been used. Numerical solutions of five different test problems have been obtained. The efficiency and accuracy of the method have been measured by calculating error norms L2 and Linfinity and two lowest invariants I1 and I2. Also relative changes of invariants are given. The newly obtained numerical results have been compared with the published numerical results and a comparison has shown that the MCB-DQM is an effective numerical scheme to solve the nonlinear Schrodinger equation. (C) 2017 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.chaos.2017.04.038
dc.identifier.endpage56en_US
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.scopus2-s2.0-85018271305en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage45en_US
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2017.04.038
dc.identifier.urihttps://hdl.handle.net/11616/97790
dc.identifier.volume100en_US
dc.identifier.wosWOS:000403996000006en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofChaos Solitons & Fractalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPartial differential equationsen_US
dc.subjectDifferential quadrature methoden_US
dc.subjectStrong stability-preserving Runge Kuttaen_US
dc.subjectModified Cubic B-splinesen_US
dc.subjectSchrodinger equationen_US
dc.titleAn effective approach to numerical soliton solutions for the Schrodinger equation via modified cubic B-spline differential quadrature methoden_US
dc.typeArticleen_US

Dosyalar