A New Integer Order Approximation Table for Fractional Order Derivative Operators

dc.authoridDeniz, Furkan Nur/0000-0002-2524-7152
dc.authoridTan, Nusret/0000-0002-1285-1991
dc.authorwosidDeniz, Furkan Nur/ABB-9604-2020
dc.authorwosidTan, Nusret/ABG-8122-2020
dc.contributor.authorYuce, Ali
dc.contributor.authorDeniz, Furkan N.
dc.contributor.authorTan, Nusret
dc.date.accessioned2024-08-04T20:44:05Z
dc.date.available2024-08-04T20:44:05Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description20th World Congress of the International-Federation-of-Automatic-Control (IFAC) -- JUL 09-14, 2017 -- Toulouse, FRANCEen_US
dc.description.abstractThere is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order differential equation. However, computing analytical time responses such as unit impulse and step responses is still a difficult problem in fractional order systems. Therefore, advanced integer order approximation table which gives satisfying results is very important for simulation and realization. In this paper, an integer order approximation table is presented for fractional order derivative operators (s(alpha)) where alpha is an element of R and 0 < alpha <1 using exact time response functions computed with inverse Laplace transform solution technique. Thus, the time responses computed using the given table are almost the same with exact solution. The results are also compared with some well-known integer order approximation methods such as Oustaloup and Matsuda. It has been shown in numerical examples that the proposed method is very successful in comparison to Oustaloup's and Matsuda's methods. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipInt Federat Automat Control,Continental Automot,Occitanie Reg,Toulouse Metropole,CNES,Univ Toulouse III,Paul Sabatier,Inria,CNRS,OPTITRACK,MDPI,ISAE Supaero,iCODE,EECI,Int Journal Automat & Comp,IEEE CAA Journal Automatica Sinica,Moveoen_US
dc.description.sponsorshipScientific and Research Council of Turkey (TUBITAK) [EEEAG-115E388]en_US
dc.description.sponsorshipThis work is supported by the Scientific and Research Council of Turkey (TUBITAK) under Grant no. EEEAG-115E388.en_US
dc.identifier.doi10.1016/j.ifacol.2017.08.2177
dc.identifier.endpage9741en_US
dc.identifier.issn2405-8963
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85031787602en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage9736en_US
dc.identifier.urihttps://doi.org/10.1016/j.ifacol.2017.08.2177
dc.identifier.urihttps://hdl.handle.net/11616/97998
dc.identifier.volume50en_US
dc.identifier.wosWOS:000423965100119en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofIfac Papersonlineen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractional order systemen_US
dc.subjectMatsuda's approximation methoden_US
dc.subjectOustaloup's approximation methoden_US
dc.subjectLeast-square fittingen_US
dc.subjectOptimizationen_US
dc.subjectInverse Fourier transform methoden_US
dc.subjectLaplace transformen_US
dc.titleA New Integer Order Approximation Table for Fractional Order Derivative Operatorsen_US
dc.typeConference Objecten_US

Dosyalar