A New Integer Order Approximation Table for Fractional Order Derivative Operators
dc.authorid | Deniz, Furkan Nur/0000-0002-2524-7152 | |
dc.authorid | Tan, Nusret/0000-0002-1285-1991 | |
dc.authorwosid | Deniz, Furkan Nur/ABB-9604-2020 | |
dc.authorwosid | Tan, Nusret/ABG-8122-2020 | |
dc.contributor.author | Yuce, Ali | |
dc.contributor.author | Deniz, Furkan N. | |
dc.contributor.author | Tan, Nusret | |
dc.date.accessioned | 2024-08-04T20:44:05Z | |
dc.date.available | 2024-08-04T20:44:05Z | |
dc.date.issued | 2017 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description | 20th World Congress of the International-Federation-of-Automatic-Control (IFAC) -- JUL 09-14, 2017 -- Toulouse, FRANCE | en_US |
dc.description.abstract | There is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order differential equation. However, computing analytical time responses such as unit impulse and step responses is still a difficult problem in fractional order systems. Therefore, advanced integer order approximation table which gives satisfying results is very important for simulation and realization. In this paper, an integer order approximation table is presented for fractional order derivative operators (s(alpha)) where alpha is an element of R and 0 < alpha <1 using exact time response functions computed with inverse Laplace transform solution technique. Thus, the time responses computed using the given table are almost the same with exact solution. The results are also compared with some well-known integer order approximation methods such as Oustaloup and Matsuda. It has been shown in numerical examples that the proposed method is very successful in comparison to Oustaloup's and Matsuda's methods. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. | en_US |
dc.description.sponsorship | Int Federat Automat Control,Continental Automot,Occitanie Reg,Toulouse Metropole,CNES,Univ Toulouse III,Paul Sabatier,Inria,CNRS,OPTITRACK,MDPI,ISAE Supaero,iCODE,EECI,Int Journal Automat & Comp,IEEE CAA Journal Automatica Sinica,Moveo | en_US |
dc.description.sponsorship | Scientific and Research Council of Turkey (TUBITAK) [EEEAG-115E388] | en_US |
dc.description.sponsorship | This work is supported by the Scientific and Research Council of Turkey (TUBITAK) under Grant no. EEEAG-115E388. | en_US |
dc.identifier.doi | 10.1016/j.ifacol.2017.08.2177 | |
dc.identifier.endpage | 9741 | en_US |
dc.identifier.issn | 2405-8963 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85031787602 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 9736 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.ifacol.2017.08.2177 | |
dc.identifier.uri | https://hdl.handle.net/11616/97998 | |
dc.identifier.volume | 50 | en_US |
dc.identifier.wos | WOS:000423965100119 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Ifac Papersonline | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fractional order system | en_US |
dc.subject | Matsuda's approximation method | en_US |
dc.subject | Oustaloup's approximation method | en_US |
dc.subject | Least-square fitting | en_US |
dc.subject | Optimization | en_US |
dc.subject | Inverse Fourier transform method | en_US |
dc.subject | Laplace transform | en_US |
dc.title | A New Integer Order Approximation Table for Fractional Order Derivative Operators | en_US |
dc.type | Conference Object | en_US |