Artificial neural network models for HFCS isomerization process
Küçük Resim Yok
Tarih
2010
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer London Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This work presents an approach to the modeling of a real industrial isomerization reactor by using artificial neural networks (ANN) pre-processed with principal component analysis (PCA). The initial model considered the output fructose concentration as the output variable, while the flow rate of substrate to the reactor as the principal input variable. Then, the ANN model was restructured and inversely trained by assuming the exit fructose concentration as the input variable and the feed flow rate as the output variable. Results indicate good performance by the application of the developed strategy to an extensive industrial data set. The results are expected to be useful in future, controlling the fructose concentration in the HFCS isomerization reactor.
Açıklama
Anahtar Kelimeler
ANN, PCA, Modeling, Glucose isomerization, Pre-processing, Industrial isomerization process
Kaynak
Neural Computing & Applications
WoS Q Değeri
Q4
Scopus Q Değeri
Q1
Cilt
19
Sayı
7