Classification of Circular Knitting Fabric Defects Using MobileNetV2 Model
Küçük Resim Yok
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Fabric defects cause both labor and raw material losses and energy costs. These undesirable situations negatively affect the competitiveness of companies in the textile sector. Traditionally, human-oriented quality control also has important limitations such as lack of attention and fatigue. Robust and efficient defect detection systems can be developed with image processing and artificial intelligence methods. This study proposes a deep learning-based method to detect and classify common fabric defects in circular knitting fabrics. The proposed method adds a fine-tuned mechanism to the MobileNetV2 deep learning model. The added fine-tuned mechanism is optimized to classify fabric defects. The proposed model has been tested on a fabric dataset containing circular knitting fabric defects. Obtained results showed that the proposed method produced desired results in fabric defect detection and classification.
Açıklama
Anahtar Kelimeler
Kaynak
Türk Doğa ve Fen Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
12
Sayı
4