Thermoluminescence properties of Li2B4O7:Cu, B phosphor synthesized using solution combustion technique

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

To determine the effects of various concentrations of the activators copper (Cu) and boron (B) on the thermoluminescence (TL) properties of lithium tetraborate, the phosphor was first synthesized and doped with five different concentrations of copper (0.1-0.005 wt%) using solution combustion method. 0.01 wt% Cu was the concentration which showed the most significant increase in the sensitivity of the phosphor. The second sort of Li2B4O7:Cu material was prepared by adding B (0.001-0.03 wt%) to it. The newly developed copper-boron activated lithium tetraborate (Li2B4O7:Cu, B) material with 0.01 wt% Cu and 0.001 wt% B impurity concentrations was shown to have promise as a TL phosphor. The material formation was examined using powder x-Ray Diffraction (XRD) analysis and Scanning Electron Microscope (SEM) imaging. Fourier Transform Infrared (FT-IR) spectrum of the synthesized polycrystalline powder sample was also recorded. The TL glow curves were analyzed to determine various dosimetric characteristics of the synthesized luminophosphors. The dose response increased in a linear way with the beta-ray exposure between 0.1-20 Gy, a dose range being interested in medical dosimetry. The response with changing photon and electron energy was studied. The rate of decay of the TL signal was investigated both for dark storage and under direct sunlight. Li2B4O7:Cu, B showed no individual variation of response in 9 recycling measurements. The fluorescence spectrum was determined. The kinetic parameters were estimated by different methods and the results discussed. The studied properties of synthesized Li2B4O7:Cu, B were found all favorable for dosimetric purposes.

Açıklama

Anahtar Kelimeler

Copper and boron doped Li2B4O7, Dosimetry, Solution combustion synthesis method, Dose-energy response, Various heating rates, CGCD

Kaynak

Radiation Physics and Chemistry

WoS Q Değeri

Q1

Scopus Q Değeri

Q2

Cilt

141

Sayı

Künye