Sediment transport modeling in non-deposition with clean bed condition using different tree-based algorithms

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Public Library Science

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

To reduce the problem of sedimentation in open channels, calculating flow velocity is critical. Undesirable operating costs arise due to sedimentation problems. To overcome these problems, the development of machine learning based models may provide reliable results. Recently, numerous studies have been conducted to model sediment transport in non-deposition condition however, the main deficiency of the existing studies is utilization of a limited range of data in model development. To tackle this drawback, six data sets with wide ranges of pipe size, volumetric sediment concentration, channel bed slope, sediment size and flow depth are used for the model development in this study. Moreover, two tree-based algorithms, namely M5 rule tree (M5RT) and M5 regression tree (M5RGT) are implemented, and results are compared to the traditional regression equations available in the literature. The results show that machine learning approaches outperform traditional regression models. The tree-based algorithms, M5RT and M5RGT, provided satisfactory results in contrast to their regression-based alternatives with RMSE = 1.1 84 and RMSE = 1.071, respectively. In order to recommend a practical solution, the tree structure algorithms are supplied to compute sediment transport in an open channel flow.

Açıklama

Anahtar Kelimeler

Design Criteria, Sewer Design, Prediction, Limit, Channels

Kaynak

Plos One

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

16

Sayı

10

Künye