Laccase production by newly isolated white rot fungus Funalia trogii: Effect of immobilization matrix on laccase production
Küçük Resim Yok
Tarih
2013
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Bv
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The laccase production performance of newly isolated Funalia trogii (F. trogii) immobilized on low-cost activated adsorbents prepared from apricot stone was investigated in inexpensive molasses medium and compared with free pellets. The adsorbents were apricot stone-based activated carbon (AC), Cu-impregnated apricot stone-based activated carbon (Cu-AC) and Fe-impregnated apricot stone-based activated carbon (Fe-AC). Cu-AC and Fe-AC were prepared by chemical activation. The values of BET surface area (S-BET), total pore volume (V-t), micropore surface area (S-mic) and micropore volume (V-mic) which show the pore properties of the activated carbons were 133 m(2) g(-1), 0.105 cm(3) g(-1), 108 m(2) g(-1) and 0.056 cm(3) g(-1) for Cu-AC and 145 m(2) g(-1), 0.112 cm(3) g(-1), 117 m(2) g(-1) and 0.061 cm(3) g(-1) for Fe-AC, respectively. F. trogii attached well on all of these adsorbents. However, the fungus immobilized on Cu-AC produced much higher levels of laccase than the others. The laccase activity obtained in 5 g L-1 molasses media after first cycle and mean laccase activity obtained after three cycles with fungus immobilized on Cu-AC were 29.23 U mL(-1) and 27.04 U mL(-1), respectively. These activities were only 0.25 and 0.39 U mL(-1) with free pellets. The crude laccase from immobilized culture could also decolorize the textile dyes. (c) 2012 Elsevier B.V. All rights reserved.
Açıklama
Anahtar Kelimeler
Activated carbon, Enzymes, Enzyme production, Fermentation, Filamentous fungi, Laccase
Kaynak
Biochemical Engineering Journal
WoS Q Değeri
Q1
Scopus Q Değeri
Q2
Cilt
71