Some Characterizations for a Quaternion-Valued and Dual Variable Curve

dc.authoridSivridag, Ali Ihsan/0000-0002-5596-9893;
dc.authorwosidSivridag, Ali Ihsan/AAA-4298-2021
dc.authorwosidKaradağ, Müge/AAA-3687-2021
dc.contributor.authorKaradag, Muge
dc.contributor.authorSivridag, Ali Ihsan
dc.date.accessioned2024-08-04T20:45:44Z
dc.date.available2024-08-04T20:45:44Z
dc.date.issued2019
dc.departmentİnönü Üniversitesien_US
dc.description.abstractQuaternions, which are found in many fields, have been studied for a long time. The interest in dual quaternions has also increased after real quaternions. Nagaraj and Bharathi developed the basic theories of these studies. The Serret-Frenet Formulae for dual quaternion-valued functions of one real variable are derived. In this paper, by making use of the results of some previous studies, helixes and harmonic curvature concepts in Q(D3) and Q(D4) are considered and a characterization for a dual harmonic curve to be a helix is given.en_US
dc.identifier.doi10.3390/sym11020125
dc.identifier.issn2073-8994
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85061873587en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.3390/sym11020125
dc.identifier.urihttps://hdl.handle.net/11616/98661
dc.identifier.volume11en_US
dc.identifier.wosWOS:000460767300003en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofSymmetry-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectdual quaternionen_US
dc.subjectHelixesen_US
dc.subjectharmonic curvatureen_US
dc.titleSome Characterizations for a Quaternion-Valued and Dual Variable Curveen_US
dc.typeArticleen_US

Dosyalar