Monte Carlo studies in accelerator-driven systems for transmutation of high-level nuclear waste

dc.authoridAYDIN, Abdullah/0000-0001-8629-6268;
dc.authorwosidAYDIN, Abdullah/HJI-1270-2023
dc.authorwosidSarer, Basar/B-9445-2015
dc.authorwosidDÜZ, Mehtap/AAS-3672-2020
dc.contributor.authorSarer, Basar
dc.contributor.authorKorkmaz, M. Emin
dc.contributor.authorGuenay, Mehtap
dc.contributor.authorAydin, Abdullah
dc.date.accessioned2024-08-04T20:30:49Z
dc.date.available2024-08-04T20:30:49Z
dc.date.issued2008
dc.departmentİnönü Üniversitesien_US
dc.description13th International Conference on Emerging Nuclear Energy Systems -- JUN 03-08, 2007 -- Istanbul, TURKEYen_US
dc.description.abstractA spallation neutron source was modeled using a high energy proton accelerator for transmutation of Pu-239, minor actinides Np-237, Am-241 and long-lived fission products Tc-99, I-129, which are created from the operation of nuclear power reactors for the production of electricity. The acceleration driven system (ADS) is composed of a natural lead target, beam window, subcritical core, reflector, and structural material. The neutrons are produced by the spallation reaction of protons from a high intensity linear accelerator in the spallation target, and the fission reaction in the core. It is used a hexagonal lattice for the waste and fuel assemblies. The system is driven by a 1 GeV, 10 mA proton beam incident on a natural lead cylindrical target. The protons were uniformly distributed across the beam. The core is a cylindrical assembly. The main vessel is surrounded by a reflector made of graphite. The axes of the proton beam and the target are concentric with the main vessel axis. The structural walls and the beam window are made of the same material, stainless steel, HT9. We investigated the following neutronics parameters: spallation neutron and proton yields, spatial and energy distribution of the spallation neutrons, and protons, heat deposition, and the production rates of hydrogen and helium, transmutation rate of minor actinides and fission products. In the calculations, the Monte Carlo code MCNPX, which is a combination of LAHET and MCNP, was used. To transport a wide variety of particles, The Los Alamos High Energy Transport Code (LA HET) was used. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.enconman.2007.09.029
dc.identifier.endpage1971en_US
dc.identifier.issn0196-8904
dc.identifier.issn1879-2227
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-43849103991en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1966en_US
dc.identifier.urihttps://doi.org/10.1016/j.enconman.2007.09.029
dc.identifier.urihttps://hdl.handle.net/11616/94549
dc.identifier.volume49en_US
dc.identifier.wosWOS:000257011100023en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecttransmutationen_US
dc.subjectnuclear wasteen_US
dc.subjectADSen_US
dc.subjectsubcritical reactoren_US
dc.titleMonte Carlo studies in accelerator-driven systems for transmutation of high-level nuclear wasteen_US
dc.typeConference Objecten_US

Dosyalar