On trace of symmetric of bi-gamma-derivations in gamma-near-rings
dc.authorscopusid | 16551105600 | |
dc.authorscopusid | 7102665880 | |
dc.contributor.author | Uçkun M. | |
dc.contributor.author | Öztürk M.A. | |
dc.date.accessioned | 2024-08-04T19:59:24Z | |
dc.date.available | 2024-08-04T19:59:24Z | |
dc.date.issued | 2007 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | Let M be a 2-torsion free 3-prime left ?-near-ring with multiplicative center C. For x ? M, let C(x) be the centralizer of x in M. The aim of this paper is to study the trace of symmetric bi-?-derivations (also symmetric bi-generalized ?-derivations) on M. Main results are the following theorems: Let D(.,.) be a non-zero symmetric bi-?-derivation of M and F(.,.) a symmetric bi-additive mapping of M. Let d and f be traces of D(.,.) and F(.,.), respectively. In this case (1) If d(M) ? C, then M is a commutative ring. (2) If d(y), d(y) + d(y) ? C(D(x, z)) for all x, y, z ? M, then M is a commutative ring. (3) If F(.,.) is a non-zero symmetric bi-generalized ?-derivation of M associated with D(.,.) and f(M) ? C, then M is a commutative ring. (4 ) If F(.,.) is a non-zero symmetric bi-generalized ?-derivation of M associated with D(.,.) and f(y), f(y) + f(y) ? C(D(x, z)) for all x, y, z ? M, then M is a commutative ring. © 2007 University of Houston. | en_US |
dc.identifier.endpage | 339 | en_US |
dc.identifier.issn | 0362-1588 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-34447521774 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 323 | en_US |
dc.identifier.uri | https://hdl.handle.net/11616/90606 | |
dc.identifier.volume | 33 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Houston Journal of Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Prime ?-near-ring | en_US |
dc.subject | Symmetric bi-?-derivation | en_US |
dc.subject | Symmetric bi-generalized ?-derivation | en_US |
dc.title | On trace of symmetric of bi-gamma-derivations in gamma-near-rings | en_US |
dc.type | Article | en_US |