A Trigonometric Quintic B-Spline Basis Collocation Method for the KdV-Kawahara Equation
dc.authorid | Karaagac, Berat/0000-0002-6020-3243 | |
dc.authorid | Owolabi, Kolade Matthew/0000-0001-9290-3458 | |
dc.authorwosid | Karaagac, Berat/E-6311-2019 | |
dc.authorwosid | Owolabi, Kolade Matthew/AAA-2307-2019 | |
dc.contributor.author | Karaagac, B. | |
dc.contributor.author | Esen, A. | |
dc.contributor.author | Owolabi, K. M. | |
dc.contributor.author | Pindza, E. | |
dc.date.accessioned | 2024-08-04T20:54:42Z | |
dc.date.available | 2024-08-04T20:54:42Z | |
dc.date.issued | 2023 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | This paper considers an effective numerical collocation method for numerical solution of the KdV-Kawahara equation. This numerical method relies on a finite element formulation and spline interpolation with a trigonometric quintic B-spline basis. First, the KdV-Kawahara equation is reduced to a coupled equation via an auxiliary variable of the form v = u(xxx). The collocation method is then applied to the coupled equation together with the forward difference and the Crank-Nicholson formula. This results in a systemof algebraic equations in terms of time variables with the trigonometric quintic B-spline basis. For determination of the error between the numerical and exact solutions, the error norms L-2 and L-infinity are calculated. The results are illustrated by two numerical examples with their graphical representation and comparison with other methods. | en_US |
dc.identifier.doi | 10.1134/S1995423923030035 | |
dc.identifier.endpage | 228 | en_US |
dc.identifier.issn | 1995-4239 | |
dc.identifier.issn | 1995-4247 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85171884540 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 216 | en_US |
dc.identifier.uri | https://doi.org/10.1134/S1995423923030035 | |
dc.identifier.uri | https://hdl.handle.net/11616/101584 | |
dc.identifier.volume | 16 | en_US |
dc.identifier.wos | WOS:001068710000003 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Siberian Branch Russian Acad Sciences | en_US |
dc.relation.ispartof | Numerical Analysis and Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | KdV-Kawahara equation | en_US |
dc.subject | collocation method | en_US |
dc.subject | trigonometric quintic B-spline basis | en_US |
dc.subject | stability | en_US |
dc.title | A Trigonometric Quintic B-Spline Basis Collocation Method for the KdV-Kawahara Equation | en_US |
dc.type | Article | en_US |