Robust stability of multilinear affine polynomials

dc.authoridTan, Nusret/0000-0002-1285-1991
dc.authorwosidTan, Nusret/ABG-8122-2020
dc.contributor.authorTan, NR
dc.contributor.authorAtherton, DP
dc.date.accessioned2024-08-04T20:12:20Z
dc.date.available2024-08-04T20:12:20Z
dc.date.issued2002
dc.departmentİnönü Üniversitesien_US
dc.descriptionIEEE International Conference on Control Applications -- SEP 18-20, 2002 -- GLASGOW, SCOTLANDen_US
dc.description.abstractThis paper deals with the robust stability problem of multilinear affine polynomials. By multilinear affine polynomials, we mean an uncertain polynomial family consisting of multiples of independent uncertain polynomials of the form P(s,q) = l(0)(q)+l(1)(q)s+. -.+l(n)(q)s(n) whose coefficients depend linearly on q = [q(1),q(2),...,q(q)](T) and the uncertainty box is Q = {q : qiis an element of[(q(i)) under bar,(q(i)) over bar],i = 1,2...... q}. Using the geometric structure of the value set of P(s, q), a powerful edge elimination procedure is proposed for computing the value set of multilinear affine polynomials. In order to construct the value set of a multilinear affine polynomial, the mapping theorem can be used. However, in this case, it is necessary to find the images of all vertex polynomials and then taking the convex hull of the images of the vertex polynomials in the complex plane which is a computationally expensive procedure. On the other hand, the approach of the present paper greatly reduces the number of the images of vertex polynomials which are crucial for the construction of the value set. Using the proposed approach for construction of the value set of multilinear affine polynomials together with the zero exclusion principle, a robust stability result is given. The proposed stability result is important for the robust stability of control systems with multilinear affine transfer functions.en_US
dc.description.sponsorshipIEEE Control Syst Soc,IEEE,CSSen_US
dc.identifier.endpage1332en_US
dc.identifier.isbn0-7803-7386-3
dc.identifier.scopus2-s2.0-0036031711en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage1327en_US
dc.identifier.urihttps://hdl.handle.net/11616/93372
dc.identifier.wosWOS:000179485900235en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartofProceedings of The 2002 Ieee International Conference on Control Applications, Vols 1 & 2en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmultilinear affine polynomialsen_US
dc.subjectaffine linear uncertaintyen_US
dc.subjectrobust stabilityen_US
dc.subjectrobust controlen_US
dc.subjectvalue seten_US
dc.subjectzero exclusion principleen_US
dc.titleRobust stability of multilinear affine polynomialsen_US
dc.typeConference Objecten_US

Dosyalar