Modeling uniaxial compressive strength of some rocks from turkey using soft computing techniques

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Uniaxial compressive strength (UCS) is substantially used mechanical parameters to observe and classification of rocks, but this test is subsersive, taking a long time and required well equipped laboratory conditions and properly prepared samples. Therefore it is important to estimate this parameter from other physico-mechanical rock parameters that are nondestructive, easy to prepare samples and required less time. Machine learning methods which are among these methods and increase their importance and validty are Multilayer Perceptron Neural Network (MLPNN), M5 Model Tree (M5MT), Extreme Learning Machine (ELM) methods. In this study, Brazilian tensile strength, ultrasonic P-wave velocity, shore hardness tests of different rock types (Basalt, limestone, dolostone) were performed. The results were used for estimating UCS using MLPNN, M5MT, ELM methods. The validation of models were checked root mean squared error (RMSE), mean absolute error (MAE), variance account for (VAF) and coefficient of determination (R-2) and a10-index. Weights and bias values for MLPNN and ELM approaches and the tree structure for the M5MT method are presented. The result indicated MLPNN model outperforms the other models. Based on the result of predictive models with RMSE, MAE, VAF and R-2 equal to RMSE: 1.3421, MAE: 0.7985, VAF: 99.7409, R-2: 0.9982%.

Açıklama

Anahtar Kelimeler

Rock, Uniaxial Compressive Strength, Multilayer Perceptron Neural Network, M5 Model Tree, Extreme Learning Machine Algorithm

Kaynak

Measurement

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

171

Sayı

Künye