Failure analysis of an adhesively joined composite pipe system under internal pressure
Küçük Resim Yok
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Carl Hanser Verlag
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Failure and stress analyses of adhesively joined composite pipe systems of varied orientation angles under internal pressure have been carried out using the 3-D finite element method (FEM) and experimentally. Composite pipes adhesively joined without sleeves were examined. The composite pipes were produced from E-glass fiber and adhesively joined using the adhesive types DP410 and DP490. The numerical model was created using ANSYS software and the efficiency of the model was verified by the experimental results. The finite element analyses (FEA) and experimental tests were carried out to predict the failure internal pressure. The internal failure pressures were obtained from experimental tests and compared with the numerical results. Radial, tangential, axial and shear stress values were obtained via numerical analyses in composite pipes and in the adhesive layers. In addition, the von Mises stress distributions in the adhesive were obtained. The effects of the orientation angles were investigated in the interface region between the pipes and the adhesive. The most effect parameters were determined for the composite pipe system joined at various pipe radii. It was found that the composite pipes could be used under high internal pressure, a fact that is important for industrial applications.
Açıklama
Anahtar Kelimeler
Roll fracture, microstructure, non-metallic inclusions, fatigue strength
Kaynak
Materials Testing
WoS Q Değeri
Q4
Scopus Q Değeri
Q2
Cilt
60
Sayı
10