Fractional Order Stability of Systems

dc.authorwosidMatuš?, Radek/H-6355-2012
dc.authorwosidMatuš?, Radek/HPH-8692-2023
dc.authorwosidSENOL, Bilal/Y-5328-2018
dc.contributor.authorSenol, Bilal
dc.contributor.authorMatusu, Radek
dc.contributor.authorGul, Emine
dc.date.accessioned2024-08-04T20:44:10Z
dc.date.available2024-08-04T20:44:10Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEYen_US
dc.description.abstractThis paper investigates and offers some stability analysis methods for systems of non-integer orders. Well known analysis methods such as Hurwitz, interlacing property, monotonic phase increment property are reconsidered in a fractional order way of thinking. A method to find the roots of the so-called fractional order polynomials is proposed and Hurwitz-like stability of the pseudo-polynomials is investigated. Effectiveness of the interlacing property and outcomes of the monotonic phase increment property for fractional order case is shown. Results are comparatively proved and illustrated clearly.en_US
dc.description.sponsorshipIEEE Turkey Sect,Anatolian Scien_US
dc.description.sponsorshipMinistry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]en_US
dc.description.sponsorshipThe second author (RM) of this work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014) and by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.en_US
dc.identifier.isbn978-1-5386-1880-6
dc.identifier.scopus2-s2.0-85039897687en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11616/98077
dc.identifier.wosWOS:000426868700114en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2017 International Artificial Intelligence and Data Processing Symposium (Idap)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional orderen_US
dc.subjectsystemsen_US
dc.subjectstability analysisen_US
dc.subjectinterlacingen_US
dc.subjectmonotonic phase incrementen_US
dc.subjectfrequency propertiesen_US
dc.titleFractional Order Stability of Systemsen_US
dc.typeConference Objecten_US

Dosyalar