The Separation of glaucoma and non-glaucoma fundus images using EfficientNet-B0

dc.contributor.authorToptaş, Buket
dc.contributor.authorHanbay, Davut
dc.date.accessioned2024-08-04T19:42:51Z
dc.date.available2024-08-04T19:42:51Z
dc.date.issued2022
dc.departmentİnönü Üniversitesien_US
dc.description.abstractGlaucoma is an eye disease that causes vision loss. This disease progresses silently without symptoms. Therefore, it is a difficult disease to detect. If glaucoma is detected before it progresses to advanced stages, vision loss can be prevented. Computer-aided diagnosis systems are preferred to understand whether the fundus image contains glaucoma. These systems provide accurate classification of healthy and glaucoma images. In this article, a system to separate images of a fundus dataset as glaucoma or healthy is proposed. The EfficientNet B0 model, which is a deep learning model, is used in the proposed system. The input of this deep network model is designed as six layers. The experimental results of the designed model were obtained on the publicly available ACRIMA dataset images. In the end, the average accuracy rate was determined to be 0.9775.en_US
dc.identifier.doi10.17798/bitlisfen.1174512
dc.identifier.endpage1092en_US
dc.identifier.issn2147-3129
dc.identifier.issn2147-3188
dc.identifier.issue4en_US
dc.identifier.startpage1084en_US
dc.identifier.trdizinid1149212en_US
dc.identifier.urihttps://doi.org/10.17798/bitlisfen.1174512
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1149212
dc.identifier.urihttps://hdl.handle.net/11616/88746
dc.identifier.volume11en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofBitlis Eren Üniversitesi Fen Bilimleri Dergisien_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleThe Separation of glaucoma and non-glaucoma fundus images using EfficientNet-B0en_US
dc.typeArticleen_US

Dosyalar