Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method

dc.authoridYAĞMURLU, Nuri Murat/0000-0003-1593-0254
dc.authoridUÇAR, Yusuf/0000-0003-1469-5002
dc.authoridKarakoc, Seydi Battal Gazi/0000-0002-2348-4170;
dc.authorwosidYAĞMURLU, Nuri Murat/AAB-8514-2020
dc.authorwosidUÇAR, Yusuf/ABG-8562-2020
dc.authorwosidKarakoc, Seydi Battal Gazi/AFB-6984-2022
dc.authorwosidKarakoc, Seydi/ABH-7571-2020
dc.contributor.authorKarakoc, Seydi Battal Gazi
dc.contributor.authorUcar, Yusuf
dc.contributor.authorYagmurlu, Nurimurat
dc.date.accessioned2024-08-04T20:40:19Z
dc.date.available2024-08-04T20:40:19Z
dc.date.issued2015
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn this paper, a numerical solution of the modified regularized long wave (MRLW) equation has been obtained by a numerical technique based on a lumped Galerkin method using cubic B-spline finite elements. Solitary wave motion, interaction of two and three solitary waves have been studied to validate the proposed method. The three invariants (I-1, I-2, I-3) of the motion have been calculated to determine the conservation properties of the scheme. Error norms L-2 and L-infinity have been used to measure the differences between the exact and numerical solutions. Also, a linear stability analysis of the scheme is proposed.en_US
dc.identifier.endpage159en_US
dc.identifier.issn2307-4108
dc.identifier.issn2307-4116
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84932164522en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage141en_US
dc.identifier.urihttps://hdl.handle.net/11616/96846
dc.identifier.volume42en_US
dc.identifier.wosWOS:000356337000009en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAcademic Publication Councilen_US
dc.relation.ispartofKuwait Journal of Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCubic B-splinesen_US
dc.subjectfinite element methoden_US
dc.subjectGalerkinen_US
dc.subjectMRLW equationen_US
dc.subjectsolitary wavesen_US
dc.titleNumerical solutions of the MRLW equation by cubic B-spline Galerkin finite element methoden_US
dc.typeArticleen_US

Dosyalar